Of flies and men: insights on organismal metabolism from fruit flies

[1]  Robert J Chalkley,et al.  Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. , 2013, Cell metabolism.

[2]  K. Ocorr,et al.  A Drosophila Model of High Sugar Diet-Induced Cardiomyopathy , 2013, PLoS genetics.

[3]  Tetsuya Miyamoto,et al.  A Fructose Receptor Functions as a Nutrient Sensor in the Drosophila Brain , 2012, Cell.

[4]  Norbert Perrimon,et al.  Drosophila Cytokine Unpaired 2 Regulates Physiological Homeostasis by Remotely Controlling Insulin Secretion , 2012, Cell.

[5]  Xun Huang,et al.  Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization , 2012, Journal of Cell Science.

[6]  M. Pasco,et al.  High Sugar-Induced Insulin Resistance in Drosophila Relies on the Lipocalin Neural Lazarillo , 2012, PloS one.

[7]  R. Bodmer,et al.  Probing the polygenic basis of cardiomyopathies in Drosophila , 2012, Journal of cellular and molecular medicine.

[8]  J. Cho,et al.  A role for O-GlcNAcylation in setting circadian clock speed. , 2012, Genes & development.

[9]  P. Hols,et al.  Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. , 2011, Cell metabolism.

[10]  N. Perrimon,et al.  Drosophila as a model for interorgan communication: lessons from studies on energy homeostasis. , 2011, Developmental cell.

[11]  T. Baranski,et al.  A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila , 2011, Disease Models & Mechanisms.

[12]  Soohong Min,et al.  Taste-independent detection of the caloric content of sugar in Drosophila , 2011, Proceedings of the National Academy of Sciences.

[13]  T. Tanimura,et al.  Drosophila Evaluates and Learns the Nutritional Value of Sugars , 2011, Current Biology.

[14]  S. Waddell,et al.  Remembering Nutrient Quality of Sugar in Drosophila , 2011, Current Biology.

[15]  Mayuko Nishimura,et al.  Drosophila as a model to study cardiac aging , 2011, Experimental Gerontology.

[16]  Jing W. Wang,et al.  Presynaptic Facilitation by Neuropeptide Signaling Mediates Odor-Driven Food Search , 2011, Cell.

[17]  C. Thummel,et al.  The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. , 2011, Cell metabolism.

[18]  H. Jäckle,et al.  PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. , 2010, Cell metabolism.

[19]  K. Ocorr,et al.  High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. , 2010, Cell metabolism.

[20]  I. Hariharan,et al.  A Buoyancy-Based Screen of Drosophila Larvae for Fat-Storage Mutants Reveals a Role for Sir2 in Coupling Fat Storage to Nutrient Availability , 2010, PLoS genetics.

[21]  P. Kapahi,et al.  A Role for S6 Kinase and Serotonin in Postmating Dietary Switch and Balance of Nutrients in D. melanogaster , 2010, Current Biology.

[22]  B. Dickson,et al.  Sex Peptide Receptor and Neuronal TOR/S6K Signaling Modulate Nutrient Balancing in Drosophila , 2010, Current Biology.

[23]  M. Moltó,et al.  Altered lipid metabolism in a Drosophila model of Friedreich's ataxia , 2010, Human molecular genetics.

[24]  R. Kühnlein,et al.  Drosophila as a lipotoxicity model organism--more than a promise? , 2010, Biochimica et biophysica acta.

[25]  T. Andrews,et al.  Molecular Evolution and Functional Characterization of Drosophila Insulin-Like Peptides , 2010, PLoS genetics.

[26]  L. Pick,et al.  Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities , 2009, Proceedings of the National Academy of Sciences.

[27]  S. Benzer,et al.  Obesity-Blocking Neurons in Drosophila , 2009, Neuron.

[28]  Subhash D. Katewa,et al.  4E-BP Extends Lifespan upon Dietary Restriction by Enhancing Mitochondrial Activity in Drosophila , 2009, Cell.

[29]  E. Rulifson,et al.  Remote control of insulin secretion by fat cells in Drosophila. , 2009, Cell metabolism.

[30]  N. Bonini,et al.  Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants , 2009, Nature Reviews Genetics.

[31]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[32]  R Bethene Ervin,et al.  Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003-2006. , 2009, National health statistics reports.

[33]  Heinrich Jasper,et al.  Control of Metabolic Homeostasis by Stress Signaling Is Mediated by the Lipocalin NLaz , 2009, PLoS genetics.

[34]  K. Bharucha The Epicurean Fly: Using Drosophila Melanogaster to Study Metabolism , 2009, Pediatric Research.

[35]  N. Patel,et al.  Unconventional Mechanisms of Protein Transport to the Cell Surface of Eukaryotic Cells , 2009 .

[36]  M. Scott,et al.  A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. , 2008, Genes & development.

[37]  Robert V Farese,et al.  Functional genomic screen reveals genes involved in lipid-droplet formation and utilization , 2008, Nature.

[38]  E. Rulifson,et al.  The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis , 2007, Proceedings of the National Academy of Sciences.

[39]  N. Perrimon,et al.  Drosophila and the genetics of the internal milieu , 2007, Nature.

[40]  C. Thummel,et al.  Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. , 2007, Cell metabolism.

[41]  Y. Ioannou Niemann-Pick C proteins in sterol transport and absorption: flies in the ointment. , 2007, Developmental cell.

[42]  M. Pankratz,et al.  Amino acids, taste circuits, and feeding behavior in Drosophila: towards understanding the psychology of feeding in flies and man. , 2007, The Journal of endocrinology.

[43]  B. Edgar How flies get their size: genetics meets physiology , 2006, Nature Reviews Genetics.

[44]  M. Hall,et al.  TOR Signaling in Growth and Metabolism , 2006, Cell.

[45]  P. Shen,et al.  Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Pankratz,et al.  Candidate Gustatory Interneurons Modulating Feeding Behavior in the Drosophila Brain , 2005, PLoS biology.

[47]  A. Teleman,et al.  4E-BP functions as a metabolic brake used under stress conditions but not during normal growth. , 2005, Genes & development.

[48]  H. Jäckle,et al.  Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. , 2005, Cell metabolism.

[49]  E. Rulifson,et al.  Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells , 2004, Nature.

[50]  N. Sonenberg,et al.  Upstream and downstream of mTOR. , 2004, Genes & development.

[51]  Gyunghee Lee,et al.  Hemolymph Sugar Homeostasis and Starvation-Induced Hyperactivity Affected by Genetic Manipulations of the Adipokinetic Hormone-Encoding Gene in Drosophila melanogaster , 2004, Genetics.

[52]  J. Montagne,et al.  A Nutrient Sensor Mechanism Controls Drosophila Growth , 2003, Cell.

[53]  T. Wen,et al.  Developmental Control of Foraging and Social Behavior by the Drosophila Neuropeptide Y-like System , 2003, Neuron.

[54]  H. Jäckle,et al.  Control of Fat Storage by a Drosophila PAT Domain Protein , 2003, Current Biology.

[55]  B. Oliver,et al.  Functional Conservation for Lipid Storage Droplet Association among Perilipin, ADRP, and TIP47 (PAT)-related Proteins in Mammals,Drosophila, and Dictyostelium * , 2002, The Journal of Biological Chemistry.

[56]  R. Nusse,et al.  Ablation of Insulin-Producing Neurons in Flies: Growth and Diabetic Phenotypes , 2002, Science.

[57]  R. North,et al.  Rapid secretion of interleukin-1β by microvesicle shedding , 2001 .

[58]  J. Melki,et al.  Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits , 2001, Nature Genetics.

[59]  R. North,et al.  Rapid secretion of interleukin-1beta by microvesicle shedding. , 2001, Immunity.

[60]  T. P. Neufeld,et al.  Regulation of cellular growth by the Drosophila target of rapamycin dTOR. , 2000, Genes & development.

[61]  E. Hafen,et al.  Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. , 2000, Genes & development.

[62]  M. Torrisi,et al.  The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles. , 1999, Molecular biology of the cell.

[63]  C. Thummel,et al.  Flies on steroids--Drosophila metamorphosis and the mechanisms of steroid hormone action. , 1996, Trends in genetics : TIG.

[64]  C. Nüsslein-Volhard,et al.  Mutations affecting segment number and polarity in Drosophila , 1980, Nature.