Silicon-based antenna-coupled polarization-sensitive millimeter-wave bolometer arrays for cosmic microwave background instruments

We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of ∼90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope.

[1]  J. Laskar,et al.  A Broadband Planar Magic-T Using Microstrip–Slotline Transitions , 2008, IEEE Transactions on Microwave Theory and Techniques.

[2]  Zhilei Xu The Cosmology Large Angular Scale Surveyor (CLASS) , 2018 .

[3]  P. Leung,et al.  Characteristics of RF Resulting from Dielectric Discharges , 1982, IEEE Transactions on Nuclear Science.

[4]  Edward J. Wollack,et al.  Photonic choke-joints for dual-polarization waveguides , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[5]  P. Mizera,et al.  A summary of spacecraft charging results , 1982 .

[6]  Samuel Harvey Moseley,et al.  The Cosmology Large Angular Scale Surveyor (CLASS) , 2016 .

[7]  M. Lueker,et al.  TES Bolometer Array for the APEX-SZ Camera , 2008 .

[8]  Yi-Hsin Pang,et al.  A Planar Balanced Crossover , 2016, IEEE Transactions on Microwave Theory and Techniques.

[9]  Tzyy-Sheng Homg A Rigorous Study of Microstrip Crossovers and their Possible Improvements , 1994 .

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  Ki Won Yoon,et al.  Corrugated Silicon Platelet Feed Horn Array for CMB Polarimetry at 150 GHz , 2010 .

[12]  E. J. Wollack,et al.  Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization , 2015 .

[13]  J. J. Bock,et al.  SPIDER: a balloon-borne CMB polarimeter for large angular scales , 2010, Astronomical Telescopes + Instrumentation.

[14]  J. Mather Bolometer noise: nonequilibrium theory. , 1982, Applied optics.

[15]  Michele Limon,et al.  The cosmology large angular scale surveyor (CLASS): 38-GHz detector array of bolometric polarimeters , 2014, Astronomical Telescopes and Instrumentation.

[16]  Erik Heinz,et al.  Toward high-sensitivity and high-resolution submillimeter-wave video imaging , 2011 .

[17]  A. Catalano,et al.  Study of Cosmic Ray Impact on Planck/HFI Low Temperature Detectors , 2014, 1404.1305.

[18]  J. Bock,et al.  Initial test results on bolometers for the Planck high frequency instrument. , 2008, Applied optics.

[19]  F.C. de Ronde Octave-Wide Matched Symmetrical, Reciprocal, 4- And 5 Ports , 1982, 1982 IEEE MTT-S International Microwave Symposium Digest.

[20]  C.D. Taylor,et al.  On the parasitic capacitances of multilevel parallel metallization lines , 1985, IEEE Transactions on Electron Devices.

[21]  J. A. Rubiño-Mart́ın The COrE+ (Cosmic Origins Explorer) mission , 2015 .

[22]  T. Lin,et al.  Via-free broadband microstrip to CPW transition , 2001 .

[23]  Yuan Chen,et al.  A Symmetrical Four-Port Microstrip Coupler for Crossover Application , 2007, IEEE Transactions on Microwave Theory and Techniques.

[24]  P. Mizera,et al.  A summary of spacecraft charging results , 1982 .

[25]  P. Ade,et al.  Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation , 2014, 1403.6592.

[26]  Panu Helistö,et al.  Low-noise readout of superconducting bolometers based on electrothermal feedback , 2006 .

[27]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[28]  A. Abbosh,et al.  Ultra-Wideband Crossover Using Microstrip-to-Coplanar Waveguide Transitions , 2012, IEEE Microwave and Wireless Components Letters.

[29]  S. Oguri,et al.  Mission Design of LiteBIRD , 2013, 1311.2847.

[30]  Dan Werthimer,et al.  A readout for large arrays of microwave kinetic inductance detectors. , 2012, The Review of scientific instruments.

[31]  Arttu Luukanen,et al.  Submillimeter-wave kinetic inductance bolometers on free-standing nanomembranes , 2014 .

[32]  A. R. Frederickson,et al.  Upsets related to spacecraft charging , 1996 .

[33]  J. J. A. Baselmans,et al.  Fluctuations in the electron system of a superconductor exposed to a photon flux , 2013, Nature Communications.

[34]  Michele Limon,et al.  CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.

[35]  Peter A. R. Ade,et al.  The Primordial Inflation Polarization Explorer (PIPER) , 2010, Astronomical Telescopes + Instrumentation.

[36]  Edward J. Wollack,et al.  Precision control of thermal transport in cryogenic single-crystal silicon devices , 2014, 1403.1326.

[37]  C.D. Taylor,et al.  On the parasitic capacitances of multilevel skewed metallization lines , 1986, IEEE Transactions on Electron Devices.

[38]  Samuel Harvey Moseley,et al.  Fabrication of an Antenna-Coupled Bolometer for Cosmic Microwave Background Polarimetry , 2009 .

[39]  Arttu Luukanen,et al.  A superconducting antenna-coupled hot-spot microbolometer , 2003 .

[40]  J. Clarke,et al.  Superconductive bolometers for submillimeter wavelengths , 1977 .

[41]  H. Ishitsuka,et al.  GroundBIRD: an experiment for CMB polarization measurements at a large angular scale from the ground , 2012, Other Conferences.

[42]  Tzyy-Sheng Horng A rigorous study of microstrip crossovers and their possible improvements , 1994 .

[43]  M. Charra,et al.  Characterization and Physical Explanation of Energetic Particles on Planck HFI Instrument , 2013, 1403.5639.

[44]  Edward J. Wollack,et al.  Via-less microwave crossover using microstrip-CPW transitions in slotline propagation mode , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[45]  J. J. Bock,et al.  Characterizing SixNy absorbers and support beams for far-infrared/submillimeter transition-edge sensors , 2010, Astronomical Telescopes + Instrumentation.

[46]  Henry B. Garrett,et al.  Environment-Induced Electrostatic Discharges as the Cause of Voyager 1 Power-On Resets , 1986 .

[47]  Erich N. Grossman,et al.  Far-infrared kinetic-inductance detectors , 1991 .

[48]  Edward J. Wollack,et al.  Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths. , 2013, Applied optics.

[49]  D. Mattis,et al.  Theory of the anomalous skin effect in normal and superconducting metals , 1958 .

[50]  Aamir Ali,et al.  Scalable background-limited polarization-sensitive detectors for mm-wave applications , 2014, Astronomical Telescopes and Instrumentation.