Miscibility–Function Relations in Organic Solar Cells: Significance of Optimal Miscibility in Relation to Percolation

[1]  R. J. Kline,et al.  Poly(3-hexylthiophene) and [6,6]-Phenyl-C61-butyric Acid Methyl Ester Mixing in Organic Solar Cells , 2012 .

[2]  H. Ade,et al.  High Performance Organic Solar Cells Processed by Blade Coating in Air from a Benign Food Additive Solution , 2016 .

[3]  M. Wienk,et al.  High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. , 2013, Angewandte Chemie.

[4]  Weiwei Li,et al.  A real-time study of the benefits of co-solvents in polymer solar cell processing , 2015, Nature Communications.

[5]  F. Liu,et al.  Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. , 2011, Nano letters.

[6]  Daoben Zhu,et al.  An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells , 2015, Advanced materials.

[7]  A. Hexemer,et al.  Significance of miscibility in multidonor bulk heterojunction solar cells , 2016 .

[8]  A. Amassian,et al.  Dynamics, Miscibility, and Morphology in Polymer:Molecule Blends: The Impact of Chemical Functionality , 2015 .

[9]  H. Ade,et al.  Strong polymer molecular weight-dependent material interactions: impact on the formation of the polymer/fullerene bulk heterojunction morphology , 2017 .

[10]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[11]  S. Mannsfeld,et al.  Quantitative determination of organic semiconductor microstructure from the molecular to device scale. , 2012, Chemical reviews.

[12]  Long Ye,et al.  From Binary to Ternary Solvent: Morphology Fine‐tuning of D/A Blends in PDPP3T‐based Polymer Solar Cells , 2012, Advanced materials.

[13]  Nitash P. Balsara,et al.  Thermodynamics of Polymer Blends , 2007 .

[14]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[15]  F. Bates,et al.  Polymer-Polymer Phase Behavior , 1991, Science.

[16]  A. Hexemer,et al.  Polymer Crystallization of Partially Miscible Polythiophene/Fullerene Mixtures Controls Morphology , 2011 .

[17]  A. Hexemer,et al.  Fast Printing and In Situ Morphology Observation of Organic Photovoltaics Using Slot‐Die Coating , 2014, Advanced materials.

[18]  Mark A Ratner,et al.  The Next Breakthrough for Organic Photovoltaics? , 2015, The journal of physical chemistry letters.

[19]  H. Ade,et al.  Fast charge separation in a non-fullerene organic solar cell with a small driving force , 2016, Nature Energy.

[20]  H. Ade,et al.  Competition between morphological attributes in the thermal annealing and additive processing of polymer solar cells , 2013 .

[21]  Jianhui Hou,et al.  Selecting a donor polymer for realizing favorable morphology in efficient non-fullerene acceptor-based solar cells. , 2014, Small.

[22]  W. Ma,et al.  Enhancing Performance of Nonfullerene Acceptors via Side‐Chain Conjugation Strategy , 2017, Advanced materials.

[23]  Aram Amassian,et al.  Spin‐Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation , 2013, Advanced materials.

[24]  D. DeLongchamp,et al.  Real‐Time Photoluminescence Studies of Structure Evolution in Organic Solar Cells , 2016 .

[25]  T. Kyu,et al.  Role of crystal-amorphous interaction in phase equilibria of crystal-amorphous polymer blends. , 2006, The journal of physical chemistry. B.

[26]  John R. Tumbleston,et al.  Quantification of Nano‐ and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, Jsc, and FF in Polymer:Fullerene Solar Cells , 2014, Advanced materials.

[27]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[28]  Shinuk Cho,et al.  A Thermally Stable Semiconducting Polymer , 2010, Advanced materials.

[29]  Hang Yin,et al.  Using Ultralow Dosages of Electron Acceptor to Reveal the Early Stage Donor–Acceptor Electronic Interactions in Bulk Heterojunction Blends , 2017 .

[30]  Fred Wudl,et al.  Polymer-fullerene miscibility: a metric for screening new materials for high-performance organic solar cells. , 2012, Journal of the American Chemical Society.

[31]  E. Anderson,et al.  Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. , 2003, Journal of synchrotron radiation.

[32]  Chunfeng Zhang,et al.  11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor , 2016, Nature Communications.

[33]  Wei You,et al.  Single‐Junction Binary‐Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency , 2017, Advanced materials.

[34]  X. Zhan,et al.  Fused Hexacyclic Nonfullerene Acceptor with Strong Near‐Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency , 2017, Advanced materials.

[35]  A. Hexemer,et al.  Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis. , 2012, The Review of scientific instruments.

[36]  Chunru Wang,et al.  Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. , 2017, Journal of the American Chemical Society.

[37]  Long Ye,et al.  9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor. , 2017, Journal of the American Chemical Society.

[38]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[39]  X. Zhan,et al.  Realizing Small Energy Loss of 0.55 eV, High Open‐Circuit Voltage >1 V and High Efficiency >10% in Fullerene‐Free Polymer Solar Cells via Energy Driver , 2017, Advanced materials.

[40]  Luping Yu,et al.  Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells. , 2011, Journal of the American Chemical Society.

[41]  J. Fréchet,et al.  Linear side chains in benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. , 2013, Journal of the American Chemical Society.

[42]  E. Gomez,et al.  Chain conformations and phase behavior of conjugated polymers. , 2016, Soft matter.

[43]  Joshua H. Carpenter,et al.  High‐Efficiency Nonfullerene Organic Solar Cells: Critical Factors that Affect Complex Multi‐Length Scale Morphology and Device Performance , 2017 .

[44]  C. J. M. Emmott,et al.  Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. , 2017, Nature materials.

[45]  Thuc‐Quyen Nguyen,et al.  Temperature Dependence of Exciton Diffusion in a Small‐Molecule Organic Semiconductor Processed With and Without Additive , 2015, Advanced materials.

[46]  A. Salleo,et al.  Effect of miscibility and percolation on electron transport in amorphous poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester blends. , 2012, Physical review letters.

[47]  B. Collins,et al.  Fullerene-Dependent Miscibility in the Silole-Containing Copolymer PSBTBT-08 , 2011 .

[48]  P. Dayal,et al.  Crystalline-amorphous interaction in relation to the phase diagrams of binary polymer blends containing a crystalline constituent. , 2008, The journal of physical chemistry. B.

[49]  H. Ade,et al.  Panchromatic Sequentially Cast Ternary Polymer Solar Cells , 2017, Advanced materials.

[50]  Long Ye,et al.  Energy‐Level Modulation of Small‐Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells , 2016, Advanced materials.

[51]  T. Russell,et al.  Measuring the Degree of Crystallinity in Semicrystalline Regioregular Poly(3-hexylthiophene) , 2016 .

[52]  C. Deibel,et al.  Temperature Dependence of Ideality Factors in Organic Solar Cells and the Relation to Radiative Efficiency , 2016 .

[53]  Yanming Sun,et al.  A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. , 2016, Journal of the American Chemical Society.

[54]  Terence B. Hook,et al.  Power and Technology Scaling into the 5 nm Node with Stacked Nanosheets , 2017 .

[55]  M. Toney,et al.  Mixed Domains Enhance Charge Generation and Extraction in Bulk‐Heterojunction Solar Cells with Small‐Molecule Donors , 2018 .

[56]  Xiaowei Zhan,et al.  Non-fullerene acceptors for organic photovoltaics: an emerging horizon , 2014 .

[57]  H. Ade,et al.  Morphology control enables thickness-insensitive efficient nonfullerene polymer solar cells , 2017 .

[58]  Monojoy Goswami,et al.  Petascale Simulations of the Morphology and the Molecular Interface of Bulk Heterojunctions. , 2016, ACS nano.

[59]  M. Isichenko Percolation, statistical topography, and transport in random media , 1992 .

[60]  John R. Tumbleston,et al.  The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells , 2013 .

[61]  Christoph J. Brabec,et al.  Introducing a New Potential Figure of Merit for Evaluating Microstructure Stability in Photovoltaic Polymer-Fullerene Blends , 2017 .

[62]  Thomas P. Russell,et al.  Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate) , 1990 .

[63]  Shruti A. Agarkar,et al.  Molecular weight tuning of low bandgap polymers by continuous flow chemistry: increasing the applicability of PffBT4T for organic photovoltaics , 2017 .

[64]  Dennis Nordlund,et al.  P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. , 2011, Nano letters.

[65]  M. Mackay,et al.  Nanoparticle concentration profile in polymer-based solar cells , 2010 .

[66]  S. Albrecht,et al.  Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells , 2015, Nature Communications.

[67]  Craig J. Hawker,et al.  Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend , 2011 .

[68]  Takashi Inoue,et al.  Temperature Dependence of the Interaction Parameter between Polystyrene and Poly(methyl methacrylate) , 1994 .

[69]  M. Chabinyc,et al.  Phase separation in bulk heterojunctions of semiconducting polymers and fullerenes for photovoltaics. , 2014, Annual review of physical chemistry (Print).

[70]  X. Zhan,et al.  Versatile third components for efficient and stable organic solar cells , 2015 .

[71]  John R. Tumbleston,et al.  Morphology linked to miscibility in highly amorphous semi-conducting polymer/fullerene blends , 2014 .

[72]  N. Balsara,et al.  50th Anniversary Perspective: Phase Behavior of Polymer Solutions and Blends , 2017 .

[73]  M. Dadmun,et al.  A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: rivers and streams. , 2011, ACS nano.

[74]  Harald Ade,et al.  A Quantitative Study of PCBM Diffusion during Annealing of P3HT:PCBM Blend Films , 2009 .

[75]  C. Snyder,et al.  Quantifying Crystallinity in High Molar Mass Poly(3-hexylthiophene) , 2014 .

[76]  B. Thompson,et al.  Structural Origins for Tunable Open‐Circuit Voltage in Ternary‐Blend Organic Solar Cells , 2015 .

[77]  M. Dadmun,et al.  The Impact of Fullerene Structure on Its Miscibility with P3HT and Its Correlation of Performance in Organic Photovoltaics , 2014 .

[78]  Andrew C. Stuart,et al.  Fluorinated Polymer Yields High Organic Solar Cell Performance for a Wide Range of Morphologies , 2013 .

[79]  C. Brabec,et al.  Overcoming the Thermal Instability of Efficient Polymer Solar Cells by Employing Novel Fullerene‐Based Acceptors , 2017 .

[80]  R. Street,et al.  Influence of polymer compatibility on the open-circuit voltage in ternary blend bulk heterojunction solar cells. , 2014, ACS applied materials & interfaces.

[81]  B. Collins,et al.  Molecular Miscibility of Polymer-Fullerene Blends , 2010 .

[82]  Timothy M. Burke,et al.  Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open‐Circuit Voltage of Organic Solar Cells , 2015 .

[83]  Long Ye,et al.  Enhanced Efficiency in Fullerene-Free Polymer Solar Cell by Incorporating Fine-designed Donor and Acceptor Materials. , 2015, ACS applied materials & interfaces.

[84]  Feng Liu,et al.  On the morphology of polymer‐based photovoltaics , 2012 .

[85]  Toshio Nishi,et al.  Melting Point Depression and Kinetic Effects of Cooling on Crystallization in Poly(vinylidene fluoride)-Poly(methyl methacrylate) Mixtures , 1975 .

[86]  B. Collins,et al.  Quantitative compositional analysis of organic thin films using transmission NEXAFS spectroscopy in an X-ray microscope , 2012 .

[87]  B. Eichinger,et al.  Phase diagrams of binary polymer solutions and blends , 1991 .

[88]  Long Ye,et al.  Green-solvent-processable organic solar cells , 2016 .

[89]  Chris Groves,et al.  The relative importance of domain size, domain purity and domain interfaces to the performance of bulk-heterojunction organic photovoltaics , 2012 .

[90]  R. J. Kline,et al.  In Situ Characterization of Polymer–Fullerene Bilayer Stability , 2015 .

[91]  W. You,et al.  The Curious Case of Fluorination of Conjugated Polymers for Solar Cells. , 2017, Accounts of chemical research.

[92]  Timothy M. Burke,et al.  How High Local Charge Carrier Mobility and an Energy Cascade in a Three‐Phase Bulk Heterojunction Enable >90% Quantum Efficiency , 2014, Advanced materials.

[93]  H. Ade,et al.  Efficient organic solar cells processed from hydrocarbon solvents , 2016, Nature Energy.

[94]  Andrew C. Stuart,et al.  Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells. , 2013, Journal of the American Chemical Society.

[95]  Aram Amassian,et al.  Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint. , 2017, Chemical reviews.

[96]  Cheng Wang,et al.  Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of High‐Performance PffBT4T‐2OD:PC71BM Organic Solar Cells , 2015 .

[97]  John R. Tumbleston,et al.  Domain Purity, Miscibility, and Molecular Orientation at Donor/Acceptor Interfaces in High Performance Organic Solar Cells: Paths to Further Improvement , 2013 .

[98]  John R. Tumbleston,et al.  Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71BM Solar Cells , 2013 .

[99]  E. Gomez,et al.  Predicting Flory-Huggins χ from Simulations. , 2017, Physical review letters.

[100]  O. Inganäs,et al.  Temperature dependence of charge carrier generation in organic photovoltaics. , 2015, Physical review letters.

[101]  Fujun Zhang,et al.  Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells , 2016, Advanced materials.

[102]  A. Heeger,et al.  High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. , 2016, Journal of the American Chemical Society.

[103]  S. Beaupré,et al.  High Efficiency Polymer Solar Cells with Long Operating Lifetimes , 2011 .

[104]  F. Liu,et al.  Molecular weight dependence of the morphology in P3HT:PCBM solar cells. , 2014, ACS applied materials & interfaces.

[105]  Christopher M. Proctor,et al.  Significance of Average Domain Purity and Mixed Domains on the Photovoltaic Performance of High‐Efficiency Solution‐Processed Small‐Molecule BHJ Solar Cells , 2015 .

[106]  Christoph J. Brabec,et al.  Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing , 2017, Nature Communications.

[107]  H. Ade,et al.  Precise Manipulation of Multilength Scale Morphology and Its Influence on Eco‐Friendly Printed All‐Polymer Solar Cells , 2017 .

[108]  C. Brabec,et al.  Increased Open‐Circuit Voltage of Organic Solar Cells by Reduced Donor‐Acceptor Interface Area , 2014, Advanced materials.

[109]  C. B. Nielsen,et al.  Non-Fullerene Electron Acceptors for Use in Organic Solar Cells , 2015, Accounts of chemical research.

[110]  N. Stingelin,et al.  The Power of Materials Science Tools for Gaining Insights into Organic Semiconductors , 2015 .

[111]  Alberto Salleo,et al.  Structural Factors That Affect the Performance of Organic Bulk Heterojunction Solar Cells , 2013 .

[112]  Guillermo C Bazan,et al.  Bulk heterojunction solar cells: morphology and performance relationships. , 2014, Chemical reviews.

[113]  Sandra Kouijzer,et al.  Predicting morphologies of solution processed polymer:fullerene blends. , 2013, Journal of the American Chemical Society.

[114]  Yongfang Li,et al.  Mapping Polymer Donors toward High‐Efficiency Fullerene Free Organic Solar Cells , 2017, Advanced materials.

[115]  Harald Ade,et al.  Miscibility, Crystallinity, and Phase Development in P3HT/PCBM Solar Cells: Toward an Enlightened Understanding of Device Morphology and Stability , 2011 .

[116]  James H. Bannock,et al.  Origin of fullerene-induced vitrification of fullerene:donor polymer photovoltaic blends and its impact on solar cell performance , 2017 .