Heterostructure devices: A device physicist looks at interfaces

The band offsets occurring at abrupt hetero-interfaces in heterostructure devices serve as potential steps acting on the mobile carriers, in addition to the macroscopic electrostatic forces already present in homostructure devices. Incorporation of hetero-interfaces therefore offers a powerful device design parameter to control the distribution and flow of mobile carriers, greatly improving existing kinds of devices and making new kinds of devices possible. Unusual device requirements can often be met by band lineups occurring in suitable semiconductor combinations. Excellent theoretical rules exist for the semi-quantitative (< ±0.2 eV) prediction of band offsets, even unusual ones, but no quantitatively accurate (< ±l kT) purely theoretical predictive rules are currently available. Poorly-understood second-order nuisance effects, such as small interface charges and small technology-dependent offset variations, act as major limitations in device design. Suitable measurements on device-type structures can provide accurate values for interface physics parameters, but the most widely used measurements are of limited reliability, with pure I—V measurement being of least use. Many of the problems at interfaces between two III/V semiconductors are hugely magnified at interfaces between a compound semiconductor and an elemental one. Large interface charges, and a strong technology dependence of band offsets are to be expected, but can be reduced by deliberate use of certain unconventional crystallographic orientations. An understanding of such polar/nonpolar interfaces is emerging; it is expected to lead to a better understanding and control of III/V-only device interfaces as well.

[1]  E. A. Kraut,et al.  Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials , 1980 .

[2]  F. Capasso,et al.  The graded bandgap multilayer avalanche photodiode: A new low-noise detector , 1982, IEEE Electron Device Letters.

[3]  A. G. Milnes,et al.  Heterojunctions and Metal Semiconductor Junctions , 1972 .

[4]  E. A. Kraut,et al.  XPS measurement of GaAs–AlAs heterojunction band discontinuities: Growth sequence dependence , 1981 .

[5]  W. Frensley,et al.  Prediction of semiconductor heterojunction discontinuities from bulk band structures , 1976 .

[6]  Leo Esaki,et al.  Electronic properties of InAsGaSb superlattices , 1980 .

[7]  T. C. Mcgill,et al.  Correlation for III-V and II-VI Semiconductors of the Au Schottky Barrier Energy with Anion Electronegativity , 1976 .

[8]  R. Milano,et al.  Effect of heterojunction spike on the quantum efficiency of an AlGaAs/GaAs heterojunction charge coupled device , 1982 .

[9]  R. Daniels,et al.  Nature of the Band Discontinuities at Semiconductor Heterojunction Interfaces , 1982 .

[10]  A. Cho,et al.  Photocollection efficiency and interface charges of MBE‐grown abrupt p (GaAs) ‐N (Al0.33Ga0.67As) heterojunctions , 1978 .

[11]  Sigurd Wagner,et al.  Heterojunction band discontinuities , 1976 .

[12]  E. A. Kraut,et al.  Polar heterojunction interfaces , 1978 .

[13]  T. Drummond,et al.  High mobility GaAs-AlxGa1-xAs single period modulation-doped heterojunctions , 1981 .

[14]  H. Gummel,et al.  Depletion‐Layer Capacitance of p+n Step Junctions , 1967 .

[15]  J. A. Van Vechten,et al.  Quantum Dielectric Theory of Electronegativity in Covalent Systems. II. Ionization Potentials and Interband Transition Energies , 1969 .

[16]  T. Mimura The present status of modulation-doped and insulated-gate field-effect transistors in III–V semiconductors , 1982 .

[17]  G. Osbourn Electronic structure of GaAsxP1−x/GaP strained‐layer superlattices with x<0.5 , 1982 .

[18]  G. Margaritondo The heterojunction parameters from a microscopic point of view , 1983 .

[19]  R. Kaplan LEED investigation of the Si (112) surface structure , 1982 .

[20]  W. Frensley,et al.  Theory of the energy-band lineup at an abrupt semiconductor heterojunction , 1977 .

[21]  Russell D. Dupuis,et al.  Quantum-well heterostructure lasers , 1980 .

[22]  Leo Esaki,et al.  In1−xGaxAs‐GaSb1−yAsy heterojunctions by molecular beam epitaxy , 1977 .

[23]  A. Gossard,et al.  Alloy Clustering inGa1−xAlxAsCompound Semiconductors Grown by Molecular Beam Epitaxy , 1982 .

[24]  H. Stormer Electron mobilities in modulation-doped GaAs-(AlGa)As heterostructures , 1983 .

[25]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[26]  R.L. Anderson Experiments on Ge-GaAs heterojunctions , 1962, IRE Transactions on Electron Devices.

[27]  Herbert Kroemer,et al.  A proposed class of hetero-junction injection lasers , 1963 .

[28]  H. Kroemer Problems in the theory of heterojunction discontinuities , 1975 .

[29]  G. Guichar,et al.  Electronic surface properties of cleaved GaP(110) , 1979 .

[30]  W. Harrison Theory of polar semiconductor surfaces , 1979 .

[31]  J. Phillips Partial dislocations, columnar growth, clustering, and pinhole formation in ultrathin film semiconductor heterostructures , 1981 .

[32]  R. M. Biefeld,et al.  A GaAsxP1−x/GaP strained‐layer superlattice , 1982 .

[33]  W. Harrison Elementary theory of heterojunctions , 1977 .

[34]  Gottfried H. Döhler,et al.  Electron States in Crystals with “nipi‐Superstructure” , 1972 .

[35]  S. Wright,et al.  Polar‐on‐nonpolar epitaxy: Sublattice ordering in the nucleation and growth of GaP on Si(211) surfaces , 1982 .

[36]  G. Döhler,et al.  Tunable absorption coefficient in GaAs doping superlattices , 1982 .

[37]  R. C. Miller,et al.  Extrinsic layer at AlxGa1−xAs‐GaAs interfaces , 1982 .

[38]  James S. Harris,et al.  Measurement of isotype heterojunction barriers by C‐V profiling , 1980 .

[39]  R. S. Bauer,et al.  On the adjustability of the “abrupt” heterojunction band-gap discontinuity , 1983 .

[40]  H. Casey,et al.  Heterostructure lasers , 1978 .

[41]  H. Kroemer,et al.  On the theory of Debye averaging in the C-V profiling of semiconductors , 1981 .

[42]  Herbert Kroemer,et al.  On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si, and similar zincblende‐on‐diamond systems , 1980 .

[43]  J. Harris,et al.  Interface studies of AlxGa1−xAs‐GaAs heterojunctions , 1979 .

[44]  F. Capasso NEW DEVICE APPLICATIONS OF BANDEDGE DISCONTINUITIES IN MULTILAYER HETEROJUNCTION STRUCTURES , 1983 .

[45]  Preparation and Properties of GaAs ‐ GaP , GaAs ‐ Ge , and GaP ‐ Ge Heterojunctions , 1964 .

[46]  H. Kroemer,et al.  Heterostructure bipolar transistors and integrated circuits , 1982, Proceedings of the IEEE.

[47]  W. Harrison Surface reconstruction on semiconductors , 1976 .