Large Fluctuations and Axiom-C Structures in Deterministically Thermostatted Systems

The Gallavotti-Cohen fluctuation theorem concerns large deviations in the time evolution of global quantities such as the phase space contraction rate of gaussian thermostatted particle systems, which in some cases is proportional to the entropy production rate. In this paper, we analyze the scaling properties of the probability distribution functions of the fluctuations of the phase space contraction rate of gaussian thermostatted shearing systems, at high shear rates. This leads us to argue that the dynamics of gaussian thermostatted shearing systems is closely related to that of the axiom-C systems defined by Bonetto and Gallavotti.

[1]  Giovanni Gallavotti,et al.  Chaotic dynamics, fluctuations, nonequilibrium ensembles. , 1997, Chaos.

[2]  G. Gentile Large deviation rule for Anosov flows , 1996, chao-dyn/9603008.

[3]  Giovanni Gallavotti,et al.  A local fluctuation theorem , 1998, chao-dyn/9808005.

[4]  J. Lebowitz,et al.  A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics , 1998, cond-mat/9811220.

[5]  D. Ruelle Smooth Dynamics and New Theoretical Ideas in Nonequilibrium Statistical Mechanics , 1998, chao-dyn/9812032.

[6]  The Fluctuation Theorem as a Gibbs Property , 1998, math-ph/9812015.

[7]  Evans,et al.  Probability of second law violations in shearing steady states. , 1993, Physical review letters.

[8]  J. Lebowitz,et al.  (Global and local) fluctuations of phase space contraction in deterministic stationary nonequilibrium. , 1998, Chaos.

[9]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[10]  Morriss,et al.  Proof of Lyapunov exponent pairing for systems at constant kinetic energy. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  T. Antal,et al.  1/f noise and extreme value statistics. , 2001, Physical review letters.

[12]  G. Gallavotti Chaotic Hypothesis and Universal Large Deviations Properties , 1998, chao-dyn/9808004.

[13]  E. Cohen,et al.  Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.

[14]  F. Bonetto,et al.  Chaotic principle: an experimental test , 1996, chao-dyn/9604017.

[15]  G. Gallavotti,et al.  Extension of Onsager's Reciprocity to Large Fields and the Chaotic Hypothesis. , 1996, Physical review letters.

[16]  Giovanni Gallavotti,et al.  Dynamical ensembles equivalence in fluid mechanics , 1996, chao-dyn/9605006.

[17]  Giovanni Gallavotti,et al.  Reversibility, Coarse Graining and the Chaoticity Principle , 1996, chao-dyn/9602022.

[18]  T. Antal,et al.  Roughness distributions for 1/f alpha signals. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  J. Pinton,et al.  Universality of rare fluctuations in turbulence and critical phenomena , 1998, Nature.

[20]  Note on phase space contraction and entropy production in thermostatted Hamiltonian systems. , 1997, Chaos.

[21]  Fluctuations in two-dimensional reversibly damped turbulence , 1998, chao-dyn/9810028.

[22]  A. Politi,et al.  Energy transport in anharmonic lattices close to and far from equilibrium , 1997, cond-mat/9709156.

[23]  G. Benettin,et al.  The Gallavotti–Cohen Fluctuation Theorem for a Nonchaotic Model , 1999, chao-dyn/9909004.

[24]  Lyapunov spectra and nonequilibrium ensembles equivalence in 2D fluid mechanics , 2002, nlin/0209039.

[25]  S. Ciliberto,et al.  An experimental test of the Gallavotti-Cohen fluctuation theorem , 1998 .

[26]  Carl P. Dettmann,et al.  Thermostats: Analysis and application. , 1998, Chaos.

[27]  Carlangelo Liverani,et al.  Conformally Symplectic Dynamics and Symmetry of the Lyapunov Spectrum , 1998 .