A Full Heteroscedastic One-Way Error Components Model Allowing for Unbalanced Panel: Pseudo-Maximum Likelihood Estimation and Specification Testing

This paper proposes an extension of the standard one-way error components model allowing for heteroscedasticity in both the individual-specific and the general error terms, as well as for unbalanced panel. Onthe grounds of its robustness to distributional misspecification, its robustness to possible misspecification of the assumed scedastic structure of the data, its computational convenience and its potential efficiency, we argue for estimating this model by Gaussian pseudo-maximum likelihood of order two. Further, we review how, taking advantage of the powerful m-testing framework,the correct specification of the prominent aspects of the model may be tested. So are surveyed potentially useful nested, non-nested, Hausman and information matrix type diagnostic tests of both the mean and the variance specification of the model. Finally, we illustrate the practical relevance of our proposed model and estimation and diagnostic testing procedures through an empirical example in the production analysis field.

[1]  Bernard Lejeune A distribution-free joint test and one-directional robust tests for random individual effects and heteroscedasticity allowing for unbalanced panels , 1999 .

[2]  Jan R. Magnus,et al.  Multivariate error components analysis of linear and nonlinear regression models by maximum likelihood , 1982 .

[3]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[4]  Trevor Breusch,et al.  Maximum likelihood estimation of random effects models , 1987 .

[5]  J. Wooldridge Estimation and inference for dependent processes , 1994 .

[6]  Badi H. Baltagi,et al.  A Generalized Error Component Model with Heteroscedastic Disturbances , 1988 .

[7]  Andrew Harvey,et al.  The econometric analysis of time series , 1991 .

[8]  Qi Li,et al.  Adaptive Estimation in the Panel Data Error Component Model with Heteroskedasticity of Unknown Form , 1994 .

[9]  Richard E. Quandt,et al.  COMPUTATIONAL PROBLEMS AND METHODS , 1983 .

[10]  Jeffrey M. Wooldridge,et al.  Selection corrections for panel data models under conditional mean independence assumptions , 1995 .

[11]  George Tauchen Diagnostic testing and evaluation of maximum likelihood models , 1985 .

[12]  G. Chamberlain Asymptotic efficiency in estimation with conditional moment restrictions , 1987 .

[13]  P. Douglas,et al.  A theory of production , 1928 .

[14]  Robert F. Phillips Estimation of a Stratified Error-Components Model* , 2003 .

[15]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[16]  A. Harvey Estimating Regression Models with Multiplicative Heteroscedasticity , 1976 .

[17]  B. Lejeune Error Components Models and variable heterogeneity: modelisation, second order pseudo-maximum likelihood estimation and specification testing , 1998 .

[18]  Jeffrey M. Wooldridge,et al.  Specification testing and quasi-maximum-likelihood estimation , 1991 .

[19]  Badi H. Baltagi,et al.  Joint LM Test for Homoskedasticity in a One-Way Error Component Model , 2005 .

[20]  David R. Cox,et al.  Further Results on Tests of Separate Families of Hypotheses , 1962 .

[21]  W. Newey,et al.  16 Efficient estimation of models with conditional moment restrictions , 1993 .

[22]  W. D. Ray,et al.  The Econometric Analysis of Time Series. , 1981 .

[23]  J. Magnus Maximum likelihood estimation of the GLS model with unknown parameters in the disturbance covariance matrix , 1978 .

[24]  T. Breurch,et al.  A simple test for heteroscedasticity and random coefficient variation (econometrica vol 47 , 1979 .

[25]  Alberto Holly,et al.  A Score Test for Individual Heteroscedasticity in a One-Way Error Components Model. , 1999 .

[26]  J. MacKinnon,et al.  Several Tests for Model Specication in the Pres-ence of Alternative Hypotheses , 1981 .

[27]  Nilanjana Roy,et al.  IS ADAPTIVE ESTIMATION USEFUL FOR PANEL MODELS WITH HETEROSKEDASTICITY IN THE INDIVIDUAL SPECIFIC ERROR COMPONENT? SOME MONTE CARLO EVIDENCE , 2002 .

[28]  Jeffrey M. Wooldridge,et al.  On the application of robust, regression- based diagnostics to models of conditional means and conditional variances , 1991 .

[29]  J. Wooldridge A Unified Approach to Robust, Regression-Based Specification Tests , 1990, Econometric Theory.

[30]  Jack Kaplan,et al.  Estimators for the One-Way Random Effects Model with Unequal Error Variances , 1981 .

[31]  H. A. A. Verbon,et al.  Testing for heteroscedasticity in a model of seemingly unrelated regression equations with variance components (SUREVC) , 1980 .

[32]  Laszlo Matyas,et al.  Missing observations and panel data: A Monte-Carlo analysis , 1991 .

[33]  B. Lejeune A full heteroscedastic one-way error components model for incomplete panel: Pseudo-maximum likelihood estimation and specification testing , 1996 .

[34]  B. Lejeune A full heteroscedastic one-way error components model for incomplete panel: maximum likelihood estimation and Lagrange multiplier testing , 1996 .

[35]  Badi H. Baltagi,et al.  An Alternative Heteroscedastic Error Components Model , 1988, Econometric Theory.

[36]  B. Lejeune Second order pseudo-maximum likelihood estimation and conditional variance misspecification , 1997 .

[37]  Tom Wansbeek,et al.  Estimation of the error-components model with incomplete panels , 1989 .

[38]  C. Hildreth,et al.  Some Estimators for a Linear Model With Random Coefficients , 1968 .

[39]  C. Gouriéroux,et al.  PSEUDO MAXIMUM LIKELIHOOD METHODS: THEORY , 1984 .

[40]  J. B. Ramsey,et al.  Tests for Specification Errors in Classical Linear Least‐Squares Regression Analysis , 1969 .

[41]  Badi H. Baltagi,et al.  Incomplete panels: A comparative study of alternative estimators for the unbalanced one-way error component regression model , 1994 .

[42]  Whitney K. Newey,et al.  Maximum Likelihood Specification Testing and Conditional Moment Tests , 1985 .

[43]  Aroop K. Mahanty,et al.  THEORY OF PRODUCTION , 1980 .

[44]  P. Balestra Fixed Effect Models and Fixed Coefficient Models , 1992 .

[45]  Patrick Sevestre,et al.  The Econometrics of Panel Data , 1993 .

[46]  D. Cox Tests of Separate Families of Hypotheses , 1961 .

[47]  W. Randolph,et al.  A transformation for heteroscedastic error components regression models , 1988 .

[48]  W. Newey,et al.  Semiparametric Efficiency Bounds , 1990 .

[49]  Mazodier,et al.  Heteroscedasticity and Stratification in Error Components Models , 1978 .

[50]  W. Randolph Housing Depreciation and Aging Bias in the Consumer Price Index , 1988 .