On low temperature glide of dissociated 〈1 1 0〉 dislocations in strontium titanate

Abstract An elastic interaction model is presented to quantify low temperature plasticity of SrTiO3 via glide of dissociated 〈1 1 0〉{1 1 0} screw dislocations. Because 〈1 1 0〉 dislocations are dissociated, their glide, controlled by the kink-pair mechanism at T < 1050 K, involves the formation of kink-pairs on partial dislocations, either simultaneously or sequentially. Our model yields results in good quantitative agreement with the observed non-monotonic mechanical behaviour of SrTiO3. This agreement allows to explain the experimental results in terms of a (progressive) change in 〈1 1 0〉{1 1 0} glide mechanism, from simultaneous nucleation of two kink-pairs along both partials at low stress, towards nucleation of single kink-pairs on individual partials if resolved shear stress exceeds a critical value of 95 MPa. High resolved shear stress allows thus for the activation of extra nucleation mechanisms on dissociated dislocations impossible to occur under the sole action of thermal activation. We suggest that stress condition in conjunction with core dissociation is key to the origin of non-monotonic plastic behaviour of SrTiO3 at low temperatures.

[1]  P. Carrez,et al.  Modeling dislocation glide and lattice friction in Mg2SiO4 wadsleyite in conditions of the Earth’s transition zone , 2016 .

[2]  M. Castillo-Rodríguez,et al.  Theoretical and experimental study of the core structure and mobility of dislocations and their influence on the ferroelectric polarization in perovskite KNbO 3 , 2015 .

[3]  P. Carrez,et al.  Modeling dislocation glide in Mg2SiO4 ringwoodite: Towards rheology under transition zone conditions , 2015 .

[4]  M. Mrovec,et al.  Atomistic simulation study of 〈1 1 0〉 dislocations in strontium titanate , 2012 .

[5]  D. Caillard,et al.  Thermally Activated Mechanisms in Crystal Plasticity , 2011 .

[6]  M. Castillo-Rodríguez,et al.  The kink-pair mechanism and low-temperature flow-stress behaviour of strontium titanate single crystals , 2011 .

[7]  M. Mrovec,et al.  Theoretical investigation of {110} generalized stacking faults and their relation to dislocation behavior in perovskite oxides , 2010 .

[8]  M. Castillo-Rodríguez,et al.  Dislocation dissociation and stacking-fault energy calculation in strontium titanate , 2010 .

[9]  A. Muñoz,et al.  Analysis of a Kink Pair Model Applied to a Peierls Mechanism in Basal and Prism Plane Slips in Sapphire (α‐Al2O3) Deformed Between 200° and 1800°C , 2008 .

[10]  D. Ferré,et al.  Modeling dislocation cores in Sr Ti O 3 using the Peierls-Nabarro model , 2008 .

[11]  D. Brunner Low-temperature plasticity and flow-stress behaviour of strontium titanate single crystals , 2006 .

[12]  W. Sigle,et al.  Dislocations in plastically deformed SrTiO3 , 2006 .

[13]  W. Shao-feng Dislocation energy and Peierls stress: a rigorous calculation from the lattice theory , 2006 .

[14]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[15]  M. Baskes,et al.  Nucleation of kink pairs on partial dislocations: A new model for solution hardening and softening , 2003 .

[16]  Zaoli Zhang,et al.  Electronic and atomic structure of a dissociated dislocation in SrTiO3 , 2002 .

[17]  S. K. Streiffer,et al.  Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films , 2002 .

[18]  P. Gumbsch,et al.  Plasticity and an inverse brittle-to-ductile transition in strontium titanate. , 2001, Physical review letters.

[19]  W. Sigle,et al.  Surprising results of a study on the plasticity in strontium titanate , 2001 .

[20]  T. Matsunaga,et al.  Transmission electron microscopy of dislocations in SrTiO3 , 2000 .

[21]  M. Tang,et al.  Dislocation mobility and the mechanical response of b.c.c. single crystals: A mesoscopic approach , 1998 .

[22]  Gong,et al.  Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. , 1996, Physical review. B, Condensed matter.

[23]  S. Takeuchi Glide of interacting partial dislocations in the Peierls mechanism , 1995 .

[24]  G. Schoeck,et al.  Dissociated dislocations in the Peierls potential , 1994 .

[25]  Duesbery,et al.  Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces. , 1994, Physical review. B, Condensed matter.

[26]  Toshio Suzuki,et al.  Kink pair nucleation and critical shear stress , 1993 .

[27]  S. B. Krupanidhi,et al.  Structural and electrical characteristics of SrTiO 3 thin films for dynamic random access memory applications , 1993 .

[28]  J. Christian Some surprising features of the plastic deformation of body-centered cubic metals and alloys , 1983 .

[29]  H. Möller The movement of dissociated dislocations in the diamond-cubic structure , 1978 .

[30]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[31]  V. Vítek,et al.  Dislocations and stacking faults , 1970 .

[32]  J. E. Dorn,et al.  A CRITICAL REVIEW OF THE PEIERLS MECHANISM , 1967 .

[33]  S. TOLANSKY,et al.  Dislocations , 1966, Nature.

[34]  V. Celli,et al.  Theory of Dislocation Mobility in Semiconductors , 1963 .

[35]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[36]  F. Nabarro Dislocations in a simple cubic lattice , 1947 .

[37]  R. Peierls The size of a dislocation , 1940 .