A CAD framework for generating self-checking multipliers based on residue codes

The basic drawbacks related to the design of self-checking circuits include high hardware cost and design effort. Recent developments on self-checking operators based on parity prediction compatible schemes allow us to achieve high fault coverage and low hardware cost in self-checking data paths for the majority of basic data path blocks such as, adders, ALUs, shifters, register files, etc. However, parity prediction self-checking multipliers involve hardware overhead significantly higher than for other blocks. Thus, large multipliers will increase significantly the hardware overhead of the whole data path. Residue arithmetic codes allow to reduce this cost The tools presented in this paper generate automatically self-checking multipliers using such codes. They complete our tools using parity prediction for various other blocks, and enable automatic generation of low cost self-checking data paths.

[1]  JeawLouis DUFOUR Safety computations in integrated circuits , 1996, Proceedings of 14th VLSI Test Symposium.

[2]  Earl E. Swartzlander,et al.  Computer Arithmetic , 1980 .

[3]  Michael Nicolaidis,et al.  Efficient implementations of self-checking adders and ALUs , 1993, FTCS-23 The Twenty-Third International Symposium on Fault-Tolerant Computing.

[4]  Algirdas Avizienis,et al.  Arithmetic Algorithms for Error-Coded Operands , 1973, IEEE Transactions on Computers.

[5]  Yervant Zorian,et al.  Fault-secure shifter design: results and implementations , 1997, Proceedings European Design and Test Conference. ED & TC 97.

[6]  Michael Nicolaidis,et al.  Fault-Secure Parity Prediction Arithmetic Operators , 1997, IEEE Des. Test Comput..

[7]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[8]  Frederick F. Sellers,et al.  Error detecting logic for digital computers , 1968 .

[9]  D. Nikolos,et al.  Efficient Design of Totally Self-Checking Checkers for all Low-Cost Arithmetic Codes , 1988, IEEE Trans. Computers.

[10]  Yervant Zorian,et al.  Scaling deeper to submicron: on-line testing to the rescue , 1999, Design, Automation and Test in Europe Conference and Exhibition, 1999. Proceedings (Cat. No. PR00078).

[11]  Israel Koren Computer arithmetic algorithms , 1993 .

[12]  Stanislaw J. Piestrak,et al.  Design of residue generators and multioperand modular adders using carry-save adders , 1991, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.

[13]  Tack-Don Han,et al.  Fast area-efficient VLSI adders , 1987, 1987 IEEE 8th Symposium on Computer Arithmetic (ARITH).

[14]  Michael Nicolaidis,et al.  On-line testing for VLSI: state of the art and trends , 1998, Integr..

[15]  Michael Nicolaidis,et al.  Achieving fault secureness in parity prediction arithmetic operators: general conditions and implementations , 1996, Proceedings ED&TC European Design and Test Conference.

[16]  H. T. Kung,et al.  A Regular Layout for Parallel Adders , 1982, IEEE Transactions on Computers.

[17]  Eberhard Böhl,et al.  The fail-stop controller AE11 , 1997, Proceedings International Test Conference 1997.

[18]  Kai Hwang,et al.  Computer arithmetic: Principles, architecture, and design , 1979 .

[19]  Uwe Sparmann,et al.  On the check base selection problem for fast adders , 1993, Digest of Papers Eleventh Annual 1993 IEEE VLSI Test Symposium.

[20]  Jack Sklansky,et al.  Conditional-Sum Addition Logic , 1960, IRE Trans. Electron. Comput..

[21]  D. A. Anderson,et al.  Design of self-checking digital networks using coding techniques , 1971 .

[22]  Michael Nicolaidis Scaling deeper to submicron: on-line testing to the rescue , 1998, Proceedings International Test Conference 1998 (IEEE Cat. No.98CH36270).

[23]  Harold S. Stone,et al.  A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations , 1973, IEEE Transactions on Computers.

[24]  Sudhakar M. Reddy,et al.  On the effectiveness of residue code checking for parallel two's complement multipliers , 1994, Proceedings of IEEE 24th International Symposium on Fault- Tolerant Computing.

[25]  Michael Nicolaidis Design for soft-error robustness to rescue deep submicron scaling , 1998, Proceedings International Test Conference 1998 (IEEE Cat. No.98CH36270).