Amplitude and phase modes in trans-polyacetylene: Resonant Raman scattering and induced infrared activity.

The resonant Raman scattering (RRS) from the three ${A}_{g}$ modes of trans-polyacetylene and the charged-induced ir modes are analyzed with use of the amplitude- and phase-mode theories. It is shown that the observed phonon frequencies and the relative intensities of all modes obtained at various laser excitation energies \ensuremath{\Elzxh}${\ensuremath{\omega}}_{L}$ is accounted for by a single phonon propagator which also describes the charge-induced infrared-active modes. The dispersion of the RRS frequencies with \ensuremath{\Elzxh}${\ensuremath{\omega}}_{L}$ exhibits inhomogeneity of the sample which in turn provides the functional dependence of the \ensuremath{\pi}-electron gap ${E}_{g}$ on an effective coupling parameter \ensuremath{\lambda}\ifmmode \tilde{}\else \~{}\fi{}. We show that inhomogeneity in both the electron-phonon and the electron-electron interaction parameters yields inhomogeneity in \ensuremath{\lambda}\ifmmode \tilde{}\else \~{}\fi{}. The experimental gap-versus-\ensuremath{\lambda}\ifmmode \tilde{}\else \~{}\fi{} relation is consistent with the Peierls model but allows for weak electron-electron interactions which enhance the gap. We propose a method by which the distribution in \ensuremath{\lambda}\ifmmode \tilde{}\else \~{}\fi{}, P(\ensuremath{\lambda}\ifmmode \tilde{}\else \~{}\fi{}), is directly derived from the experimental spectra. It appears that different samples show different breadth for the distribution function; samples with sharper RRS features have narrower P(\ensuremath{\lambda}\ifmmode \tilde{}\else \~{}\fi{}). We give an experimental estimate of the \ensuremath{\sigma}-bond contribution to the force constant of the carbon-carbon stretching mode and the electron-phonon interaction parameter. The pinning parameter of the charged carriers and its distribution are derived directly from the infrared absorption spectra induced either by doping or by photogeneration. The pinning of the doping-induced carriers is stronger and its distribution is wider; giving thus rise to the broader lines in the doping-induced infrared spectra. The mass of the photogenerated solitons is estimated from the relative strength of the infrared spectra and is approximately equal to the band effective mass of the electrons.

[1]  E. Ehrenfreund,et al.  Raman scattering from charge-density waves and application to polyacetylene , 1986 .

[2]  Sólyom,et al.  Charge-density waves with electron-electron interactions. , 1985, Physical review. B, Condensed matter.

[3]  Grabowski,et al.  Photogenerated solitonic states in trans-polyacetylene. , 1985, Physical review. B, Condensed matter.

[4]  Maki,et al.  Electron correlations in polyacetylene. , 1985, Physical review. B, Condensed matter.

[5]  Brivio,et al.  Resonant Raman scattering spectra of trans-(CD)x: Evidence for a distribution of conjugation lengths. , 1985, Physical review. B, Condensed matter.

[6]  B. Horovitz Mixed Stack Compounds, Phonons and Solitons , 1985 .

[7]  J. Ashkenazi,et al.  First Principles Three-Dimensional Band-Structure of Trans-Polyacetylene , 1985 .

[8]  E. Ehrenfreund,et al.  Resonant Raman Scattering in the Polyacetylene System , 1985 .

[9]  E. Ehrenfreund,et al.  Photoinduced Absorption and Resonant Raman Scattering in Trans-(CD)x , 1985 .

[10]  E. Ehrenfreund,et al.  Isotope effect in resonant Raman scattering and induced IR spectra of trans-polyacetylene , 1985 .

[11]  Vardeny,et al.  Classification of disorder and extrinsic order in polymers by resonant Raman scattering. , 1985, Physical review letters.

[12]  H. Kuzmany The particle in the box model for resonance Raman scattering in polyacetylene , 1985 .

[13]  S. Etemad,et al.  Mechanism for photogeneration of charge carriers in polyacetylene , 1984 .

[14]  J. Tanaka,et al.  Photoinduced absorption in Trans-(CD)x; isotope energy shifts , 1984 .

[15]  E. Ehrenfreund,et al.  Raman scattering and infrared phonons in polyacetylene , 1984 .

[16]  S. N. Dixit,et al.  Electron-electron interaction effects on Peierls dimerization in a half-filled band , 1984 .

[17]  J. Krumhansl,et al.  Solitons in the Peierls condensate: Phase solitons , 1984 .

[18]  E. Ehrenfreund,et al.  Resonant Raman scattering from amplitude modes in trans-(CH)x and -(CD)x , 1983 .

[19]  J. Hirsch Effect of Coulomb Interactions on the Peierls Instability , 1983 .

[20]  G. Baker,et al.  Photoinduced infrared activity in polyacetylene , 1983 .

[21]  A. Heeger,et al.  Photoexcitations in trans-(CH)x: a Fourier-transform infrared study , 1983 .

[22]  S. Lefrant,et al.  Experimental and theoretical Raman results in trans polyacetylene , 1983 .

[23]  D. Campbell,et al.  Optical absorption from polarons in a model of polyacetylene , 1983 .

[24]  A. Heeger,et al.  Absolute Raman scattering cross sections of trans - ( CH ) x , 1983 .

[25]  E. Imhoff,et al.  Frank-Condon approach for optical absorption and resonance Raman scattering intrans-polyacetylene , 1982 .

[26]  D. Heim,et al.  Hubbard versus Peierls and the Su-Schrieffer-Heeger model of polyacetylene , 1982 .

[27]  G. Baker,et al.  PHOTOGENERATED GAP STATES IN POLYACETYLENE , 1982 .

[28]  D. Moses,et al.  Pressure dependence of the photoabsorption of polyacetylene , 1982 .

[29]  A. Heeger,et al.  Structural determination of the symmetry-breaking parameter in trans-(CH)/sub x/ , 1982 .

[30]  P. Horsch Correlation effects on bond alternation in polyacetylene , 1981 .

[31]  A. Heeger,et al.  Transport, Magnetic and Structural Studies of Polyacetylene , 1981 .

[32]  B. Horovitz Vibrational Excitations of Solitons in Polyacetylene , 1981 .

[33]  J. André,et al.  Isomerization and n‐type doping of polyacetylene: Pure trans‐(CH)x and trans‐(CD)x , 1981 .

[34]  A. Pron,et al.  Infrared-active vibrational modes of charged solitons in(CH)xand(CD)x , 1981 .

[35]  H. Kuzmany,et al.  Optical modes of trans‐polyacetylene , 1981 .

[36]  D. B. Fitchen,et al.  Resonant Raman spectra of deuterated polyacetylene, (CD)x , 1980 .

[37]  M. Rice,et al.  Vibrational Excitations of Charged Solitons in Polyacetylene , 1980 .

[38]  B. Horovitz Solitons in polyacetylene: A comment , 1980 .

[39]  H. Takayama,et al.  Continuum model for solitons in polyacetylene , 1980 .

[40]  H. Kuzmany Resonance Raman Scattering from Neutral and Doped Polyacetylene , 1980 .

[41]  J. Rabolt,et al.  Vibronic intensity enhancement in the infrared spectra of heavily doped (CH)x and (CD)x , 1979 .

[42]  Masanori Ozaki,et al.  Donor and acceptor states in lightly doped polyacetylene, (CH) x , 1979 .

[43]  J. Krumhansl,et al.  Non-linear modes in the condensed peierls phase , 1978 .

[44]  H. Gutfreund,et al.  Infrared and Raman activities of organic linear conductors , 1978 .

[45]  M. Rice Dynamical properties of the Peierls-Fröhlich state on the many-phonon-coupling model , 1978 .

[46]  H. Gutfreund,et al.  Phonon dispersion and instability in linear-chain crystals , 1974 .

[47]  M. Heyde,et al.  Vibrational spectra of some carotenoids and related linear polyenes. A Raman spectroscopic study. , 1973, Journal of the American Chemical Society.

[48]  H. C. Longuet-Higgins,et al.  The alternation of bond lengths in long conjugated chain molecules , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  Yuzuru Ooshika,et al.  A Semi-empirical Theory of the Conjugated Systems : I. General Formulation , 1957 .

[50]  Yukio Furukawa,et al.  Spectroscopic studies on doped polyacetylene and β-carotene , 1980 .