Mechanical behavior of pumpkin fruits subjected to compression during maturation

During handling operations, many problems that reduce the quality of vegetables may occur. Mechanical injuries are the leading cause of postharvest losses for the pumpkin, and can take place at any point of the production chain. This study aimed at evaluating the pumpkin fruits behavior, during their ripening stages, on the values ??of maximum compression force for fixed deformations, and determining the proportional deformability modulus of the fruits under compression at the repose position . Fruits were harvested at 15, 30 , 40 , 50 and 60 days after flowering and uniaxially compressed between two parallel plates . The results allowed to conclude that both the required compression force and the proportional deformability modulus increased during the maturation course, reaching a maximum force of 1,778 N and a maximum deformation modulus of 164 MPa, after 30 days. After this period, both the maximum force and the modulus values ??decreased, reaching 1,514.8 N of maximum force and a modulus of 132.09 MPa, after 60 days of ripening . Over the course of a longer maturation time, the fruit firmness increased, therefore requiring an increase in the maximum load to achieve greater deformation. The ideal period for harvest and transport of ‘Jacarezinho’ pumpkin fruits was set from 30 to 40 days after anthesis.

[1]  P. C. Côrrea,et al.  Comportamento mecânico dos grãos de feijão submetidos a compressão , 2007 .

[2]  Sandra M. Couto,et al.  Comportamento mecânico de frutos de café: módulo de deformidade , 2002 .

[3]  S. Kim,et al.  Bruising injury of persimmon (Diospyros kaki cv. Fuyu) fruits , 2005 .

[4]  M. K. Krokida,et al.  EFFECT OF OSMOTIC DEHYDRATION ON VISCOELASTIC PROPERTIES OF APPLE AND BANANA , 2000 .

[5]  Piotr P. Lewicki,et al.  Effect of hot air temperature on mechanical properties of dried apples , 2004 .

[6]  Z. A. Henry,et al.  Resistance of Soya Beans to Compression , 2000 .

[7]  J. Romero DESIDRATAÇÃO DE ABÓBORA (Cucurbita moschata) POR MÉTODOS COMBINADOS , 2009 .

[8]  Miriam Dupas Hubinger,et al.  Propriedades mecânicas e estrutura celular de melão desidratado osmoticamente em soluções de sacarose ou maltose, com adição de lactato de cálcio , 2011 .

[9]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[10]  Osvaldo Resende,et al.  Propriedades mecânicas dos grãos de soja em função do teor de água , 2007 .

[11]  M. I. F. Chitarra,et al.  Relação entre a idade do cacho de banana 'prata' à colheita e a qualidade dos frutos após a colheita , 1998 .

[12]  A. Sereno,et al.  Relation between mechanical properties and structural changes during osmotic dehydration of pumpkin , 2007 .

[13]  B. T. Hawthorne Age of fruit at harvest influences incidence of fungal storage rots on fruit of Cucurbita maxima D. hybrid ‘Delica’ , 1990 .

[14]  H. B. Manbeck,et al.  Physical Properties Effect on Stress-Strain Behavior of Wheat En Masse—Part I. Load Response Dependence on Initial Bulk Density and Moisture Content , 1989 .

[15]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[16]  R. Deliza,et al.  Starch edible coating of papaya: effect on sensory characteristics , 2012 .

[17]  S. Das,et al.  Fracture resistance of sunflower seed and kernel to compressive loading , 2000 .

[18]  David Roylance,et al.  Introduction to Elasticity , 2000 .

[19]  L. Gerschenson,et al.  Pumpkin (Cucurbita moschata Duchesne ex Poiret) mesocarp tissue as a food matrix for supplying iron in a food product , 2009 .

[20]  J. Telis‐Romero,et al.  Solids Rheology for Dehydrated Food and Biological Materials , 2005 .

[21]  J. S. D. Aguila,et al.  Alterações fisiológicas, qualitativas e microbiológicas durante o armazenamento de abóbora minimamente processada em diferentes tipos de corte , 2006 .

[22]  N. Mohsenin Physical properties of plant and animal materials , 1970 .