Automated Synthesis of Skew-Based Clock Distribution Networks

In this paper a top-down methodology is presented for synthesizing clock distribution networks based on application-dependent localized clock skew. The methodology is divided into four phases: 1) determination of an optimal clock skew schedule for improving circuit performance and reliability; 2) design of the topology of the clock tree based on the circuit hierarchy and minimum clock path delays; 3) design of circuit structures to implement the delay values associated with the branches of the clock tree; and 4) design of the geometric layout of the clock distribution network. Algorithms to determine an optimal clock skew schedule, the optimal clock delay to each register, the network topology, and the buffer circuit dimensions are presented.