The Intrinsic Spread of a Configuration in R d

How "spread out" is a finite set of points in general position in real affine d-space? On the line, a natural measure would be the ratio between the greatest distance and the smallest; this is invariant under affine transformations, so it depends only on the "affine shape" of the configuration. If we use the same definition in higher dimensions, the property of being invariant under affine transformations is lost: we can stretch in one direction but not in another, and the ratio will change. The same thing happens if we use the maximum ratio of distances from points to hyperplanes spanned by other points. Thus it seems most natural to use the following definition, which is affinely invariant and also generalizes the "correct" definition in the one-dimensional case:

[1]  B. Grünbaum Arrangements and Spreads , 1972 .

[2]  K. F Roth Developments in Heilbronn's triangle problem , 1976 .

[3]  Michel Las Vergnas,et al.  Orientability of matroids , 1978, J. Comb. Theory, Ser. B.

[4]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[5]  E. Szemerédi,et al.  A Lower Bound for Heilbronn'S Problem , 1982 .

[6]  Richard Pollack,et al.  Multidimensional Sorting , 1983, SIAM J. Comput..

[7]  Richard Pollack,et al.  Upper bounds for configurations and polytopes inRd , 1986, Discret. Comput. Geom..

[8]  Michel Las Vergnas Order properties of lines in the plane and a conjecture of G. Ringel , 1986, J. Comb. Theory, Ser. B.

[9]  F. Frances Yao,et al.  Finite-resolution computational geometry , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[10]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[11]  Victor J. Milenkovic,et al.  Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..

[12]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[13]  John E. Hopcroft,et al.  Towards implementing robust geometric computations , 1988, SCG '88.

[14]  Bernd Sturmfels,et al.  Some Applications of Affine Gale Diagrams to Polytopes with few Vertices , 1988, SIAM J. Discret. Math..

[15]  David P. Dobkin,et al.  Recipes for geometry and numerical analysis - Part I: an empirical study , 1988, SCG '88.

[16]  B. Sturmfels Computational Synthetic Geometry , 1989 .

[17]  Bernd Sturmfels,et al.  Uniform oriented matroids without the isotopy property , 1989, Discret. Comput. Geom..

[18]  Bernd Sturmfels,et al.  Coordinate representation of order types requires exponential storage , 1989, STOC '89.

[19]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[20]  Daniel Bienstock,et al.  Some provably hard crossing number problems , 1990, SCG '90.