Numerical code for multi-component galaxies: from N-body to chemistry and magnetic fields

We present a numerical code for multi-component simulation of the galactic evolution. Our code includes the following parts: $N$-body is used to evolve dark matter, stellar dynamics and dust grains, gas dynamics is based on TVD-MUSCL scheme with the extra modules for thermal processes, star formation, magnetic fields, chemical kinetics and multi-species advection. We describe our code in brief, but we give more details for the magneto-gas dynamics. We present several tests for our code and show that our code have passed the tests with a reasonable accuracy. Our code is parallelized using the MPI library. We apply our code to study the large scale dynamics of galactic discs.

[1]  E. Vasiliev Non-equilibrium cooling rate for a collisionally cooled metal-enriched gas , 2013, 1302.0159.

[2]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[3]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[4]  C. Dobbs GMC formation by agglomeration and self gravity , 2008, 0809.1942.

[5]  Y. Shchekinov,et al.  Chemical inhomogeneity of the post-reionization universe , 2009 .

[6]  E. Tasker,et al.  A test suite for quantitative comparison of hydrodynamic codes in astrophysics , 2008, 0808.1844.

[7]  J. Schaye,et al.  The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.

[8]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[9]  D. Hollenbach,et al.  Molecule formation and infrared emission in fast interstellar shocks. I Physical processes , 1979 .

[10]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[11]  A. King Physical Processes in the Interstellar Medium , 1979 .

[12]  Y. Shchekinov,et al.  Mixing of metals during stripping of galactic gaseous halos , 2004 .

[13]  P. Goldsmith,et al.  Molecular cooling and thermal balance of dense interstellar clouds , 1978 .

[14]  D. Hollenbach,et al.  Molecule Formation and Infrared Emission in Fast Interstellar Shocks. III. Results for J Shocks in Molecular Clouds , 1989 .

[15]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[16]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[17]  M. A. Jalali,et al.  High resolution simulations of unstable modes in a collisionless disc , 2007, 0707.3078.

[18]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[19]  S. Khoperskov,et al.  The simulation of molecular clouds formation in the Milky Way , 2012, 1207.5162.

[20]  Dongsu Ryu,et al.  Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow , 1995 .

[21]  T. Girard,et al.  Global gravitationally organized spiral waves and the structure of NGC 5247 , 2012, 1209.2879.

[22]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[23]  A. N. V. K. Ravtsov,et al.  TOWARDS A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS , 2012 .

[24]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .

[25]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[26]  V. Springel,et al.  Gas stripping and mixing in galaxy clusters: a numerical comparison study , 2012, 1208.0351.

[27]  A. Zasov,et al.  Estimating the masses of the spherical and disk components of galaxies via numerical simulations , 2001 .

[28]  V. Springel,et al.  Simulations of magnetic fields in isolated disc galaxies , 2012, 1212.1452.

[29]  Mixing Timescales in a Supernova-driven Interstellar Medium , 2002, astro-ph/0208441.

[30]  A. Kravtsov,et al.  TOWARD A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS , 2012, 1210.4957.

[31]  R. Kates,et al.  Hydrodynamical simulations of galaxy formation: effects of supernova feedback , 1996, astro-ph/9605182.

[32]  K. Kusano,et al.  A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .

[33]  D. Bizyaev,et al.  Interaction between collisionless galactic discs and non-axisymmetric dark matter haloes , 2013, 1302.1778.

[34]  E. Vorobyov,et al.  Evolution of the first supernovae in protogalaxies: Dynamics of mixing of heavy elements , 2012, Astronomy Reports.

[35]  M. Brueggen,et al.  Ram pressure stripping of disc galaxies orbiting in clusters – I. Mass and radius of the remaining gas disc , 2007, 0707.2698.

[36]  A. Tielens,et al.  THE PHOTOELECTRIC HEATING MECHANISM FOR VERY SMALL GRAPHITIC GRAINS AND POLYCYCLIC AROMATIC HYDROCARBONS , 1994 .

[37]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[38]  A. Basu,et al.  Magnetic fields in nearby normal galaxies: energy equipartition , 2013, 1305.2746.

[39]  E. Vasiliev Non-equilibrium ionization states and cooling rates of photoionized enriched gas , 2010, 1009.1026.

[40]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[41]  H. Lammer,et al.  THREE-DIMENSIONAL GAS DYNAMIC SIMULATION OF THE INTERACTION BETWEEN THE EXOPLANET WASP-12b AND ITS HOST STAR , 2012, 1212.2779.

[42]  C. McNally,et al.  A WELL-POSED KELVIN–HELMHOLTZ INSTABILITY TEST AND COMPARISON , 2011, 1111.1764.

[43]  R. Cen A hydrodynamic approach to cosmology - Methodology , 1992 .