Optical characterization of anatase TiO2 films patterned by direct ultraviolet-assisted nanoimprint lithography

A direct ultraviolet (UV)-assisted nanoimprinting procedure using photosensitive titanium di-n-butoxide bis(2-ethylhexanoate) is employed in this study for the nanopatterning of anatase titanium dioxide (TiO"2) structure. Upon annealing at 400^oC for 1h, the lateral shrinkage and thickness shrinkage of the TiO"2 nanostructure were 39.6% and 52.5%, respectively, which indicated an anisotropic volume loss. During UV irradiation and annealing treatment, the refractive index of UV-irradiated TiO"2 film is gradually increased by improvement in the packing density and crystallinity of the film. According to increasing UV exposure time and annealing temperature, the optical band gap (E"g) of UV-irradiated TiO"2 film is red-shifted from 3.73 to 3.33eV due to the formation of lattice defects, vacancies and voids during the photochemical reaction and due to the effect of quantum confinement during annealing treatment. These results suggest that the refractive index and optical E"g of TiO"2 nanostructure could be controlled by tuning the UV exposure time and annealing treatment conditions. Nanopatterns of TiO"2 fabricated by direct UV-assisted nanoimprint lithography are potential candidates for use in protective coatings for optical mirrors and filters, high-reflectivity mirrors, broadband interference filters and active electro-optical devices where ordered surface nanostructures could be necessary.

[1]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[2]  H. Poelman,et al.  Characterization of TiO2 powders and thin films prepared by non-aqueous sol–gel techniques , 2009 .

[3]  J. Yates,et al.  TiO2-based Photocatalysis: Surface Defects, Oxygen and Charge Transfer , 2005 .

[4]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[5]  D. Pamu,et al.  Ambient temperature stabilization of crystalline zirconia thin films deposited by direct current magnetron sputtering , 2009 .

[6]  M. Antonietti,et al.  Highly crystalline cubic mesoporous TiO₂ with 10-nm pore diameter made with a new block copolymer template , 2004 .

[7]  Detlef W. Bahnemann,et al.  Preparation and characterization of quantum-size titanium dioxide , 1988 .

[8]  Toshinobu Yogo,et al.  Gas‐Sensing Properties of Spinodally Decomposed (Ti,Sn)O2 Thin Films , 2004 .

[9]  Jiaguo Yu,et al.  Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method , 2001 .

[10]  Valery Shklover,et al.  Nanocrystalline titanium oxide electrodes for photovoltaic applications , 2005 .

[11]  R. Loudon,et al.  The Raman effect in crystals , 1964 .

[12]  K. Ema,et al.  Influence of oxygen vacancies on optical properties of anatase TiO2 thin films , 2008 .

[13]  Kahp Y. Suh,et al.  High aspect-ratio polymer nanostructures by tailored capillarity and adhesive force , 2008 .

[14]  Characterization of Sol–Gel Derived and Crystallized ZrO2 Thin Films , 2009 .

[15]  J. Pan,et al.  Electrochromic property of the viologen-anchored mesoporous TiO2 films , 2006 .

[16]  H. Shinoda,et al.  Photocatalytic and photoelectrochemical properties of TiO2-based multiple layer thin film prepared by sol-gel and reactive-sputtering methods , 2001 .

[17]  G. Cao,et al.  Patterned Microstructure of Sol–Gel Derived Complex Oxides Using Soft Lithography , 2000 .

[18]  Paras N. Prasad,et al.  Sol−Gel-Processed SiO2/TiO2/Poly(vinylpyrrolidone) Composite Materials for Optical Waveguides , 1996 .

[19]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[20]  Dazhi Yang,et al.  Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement , 2003 .

[21]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[22]  Per-Olov Käll,et al.  Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature , 2002 .

[23]  T. Hirai,et al.  An electrochromic display based on titanium dioxide , 1982 .

[24]  Daniel Poitras,et al.  Plasma deposition of optical films and coatings: A review , 2000 .

[25]  Sarah Kim,et al.  Photo-induced hybrid nanopatterning of titanium dioxide via direct imprint lithography , 2010 .

[26]  X. Gonze,et al.  First-principles study of titanium dioxide: Rutile and anatase , 2000 .

[27]  M. Anpo,et al.  Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates , 1987 .

[28]  Valery Shklover,et al.  Quantum size effects in nanocrystalline semiconducting titania layers prepared by anodic oxidative hydrolysis of titanium trichloride , 1993 .

[29]  Chan Hin Kam,et al.  Sol-gel fabrication and properties of optical channel waveguides and gratings made from composites of titania and organically modified silane , 2002 .

[30]  Xin Zhang,et al.  Positive and Negative Photolithographic Deposition of Titanium Dioxide from Photosensitive Titanium Complexes , 2006 .

[31]  Feng Huang,et al.  Nanoparticles: Strained and Stiff , 2004, Science.

[32]  K. Hjort,et al.  Well-ordered nanopore arrays in rutile TiO2 single crystals by swift heavy ion-beam lithography , 2007 .

[33]  Charles M. Lieber,et al.  One-dimensional nanostructures: Chemistry, physics & applications , 1998 .

[34]  Emile Haddad,et al.  1 × 2 optical switch devices based on semiconductor-to-metallic phase transition characteristics of VO2 smart coatings , 2006 .

[35]  Peter Mueller,et al.  Fabrication of monolithic refractive optical lenses with organic-inorganic nanocomposites: relations between composition and mechanical and optical properties , 1997, Optics & Photonics.

[36]  J. Yates Photochemistry on TiO2: Mechanisms behind the surface chemistry , 2009 .

[37]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[38]  Mark E. Welland,et al.  Sub-10 nm Electron Beam Nanolithography Using Spin-Coatable TiO2 Resists , 2003 .

[39]  R. Jayavel,et al.  Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol–gel process , 2008 .

[40]  T. Yamaki,et al.  Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition , 2006 .