Implication of cosmological upper bound on the validity of golden ratio neutrino mixings under radiative corrections

We study the implication of the most recent cosmological upper bound on the sum of three neutrino masses, on the validity of the golden ratio (GR) neutrino mixings defined at high energy seesaw scale, considering the possibility for generating low energy values of neutrino oscillation parameters through radiative corrections in the minimal supersymmetric standard model (MSSM). The present study is consistent with the most stringent and latest Planck data on cosmological upper bound, $\sum |m_{i}|<0.12$ eV. For the radiative generation of sin$\theta_{13}$ from an exact form of golden ratio (GR) neutrino mixing matrix defined at high seesaw energy scale, we take opposite CP parity mass eigenvalues ($m_{1},-m_{2},m_{3}$) with a non-zero real value of $m_{3}$, and a larger value of $\tan\beta>60$ in order to include large effects of radiative corrections in the calculation. The present analysis including the CP violating Dirac phase and SUSY threshold corrections, shows the validity of golden ratio neutrino mixings defined at high seesaw energy scale in the normal hierarchical (NH) model. The numerical analysis with the variations of four parameters viz. $M_{R}$, $m_{s}$, $\tan\beta$ and $\bar{\eta_{b}}$, shows that the best result for the validity is obtained at $M_{R}=10^{15}$ GeV, $m_{s}=1$ TeV, $\tan\beta=68$ and $\bar{\eta_{b}}=0.01$. However, the analysis based on inverted hierarchical (IH) model does not conform with this latest Planck data on cosmological bound but it still conforms with earlier Planck cosmological upper bound $\sum |m_{i}|<0.23$ eV, thus indicating possible preference of NH over IH models.

[1]  E. Giusarma,et al.  Updated neutrino mass constraints from galaxy clustering and CMB lensing-galaxy cross-correlation measurements , 2022, Journal of High Energy Astrophysics.

[2]  N. Singh,et al.  Effects of Variations of SUSY Breaking Scale on Neutrino Parameters at Low Energy Scale under Radiative Corrections , 2022, Advances in High Energy Physics.

[3]  M. S. Singh,et al.  Deviations from tribimaximal and golden ratio mixings under radiative corrections of neutrino masses and mixings , 2022, International Journal of Modern Physics A.

[4]  T. Schwetz,et al.  NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments , 2021, Universe.

[5]  D. A. Wickremasinghe,et al.  Improved measurement of neutrino oscillation parameters by the NOvA experiment , 2021, Physical Review D.

[6]  E. Calabrese,et al.  Reconstruction of the neutrino mass as a function of redshift , 2021, Physical Review D.

[7]  T. Schwetz,et al.  The fate of hints: updated global analysis of three-flavor neutrino oscillations , 2020, Journal of High Energy Physics.

[8]  O. Mena,et al.  2020 global reassessment of the neutrino oscillation picture , 2020, Journal of High Energy Physics.

[9]  Shehu S. Abdussalam,et al.  Majorana phases in high-scale mixing unification hypotheses , 2019, 1912.13508.

[10]  Y. Muramatsu,et al.  SUSY threshold corrections to quark and lepton mixing inspired by SO (10) GUT models , 2019, Journal of High Energy Physics.

[11]  S. Hannestad,et al.  Updated results on neutrino mass and mass hierarchy from cosmology with Planck 2018 likelihoods , 2019, Journal of Cosmology and Astroparticle Physics.

[12]  J. Valle,et al.  CP symmetries as guiding posts: Revamping tribimaximal mixing. II. , 2019, Physical Review D.

[13]  Soumita Pramanick Radiative generation of realistic neutrino mixing with A4 , 2019, Nuclear Physics B.

[14]  Subhankar Roy,et al.  Stability of neutrino parameters and self-complementarity relation with varying SUSY breaking scale. , 2018, 1802.09784.

[15]  T. Fukuyama Twenty years after the discovery of $μ-τ$ symmetry , 2017, 1701.04985.

[16]  S. King Unified models of neutrinos, flavour and CP Violation , 2017, 1701.04413.

[17]  Shun Zhou,et al.  Viability of exact tri-bimaximal, golden-ratio and bimaximal mixing patterns and renormalization-group running effects , 2016, 1606.09591.

[18]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[19]  W. Hollik Lifting degenerate neutrino masses, threshold corrections and maximal mixing , 2014, 1412.5117.

[20]  C. Kim,et al.  Renormalization Group Evolution of Neutrino Parameters in Presence of Seesaw Threshold Effects and Majorana Phases , 2014, 1406.7476.

[21]  R. Srivastava Predictions from high scale mixing unification hypothesis , 2014, 1401.3399.

[22]  S. Antusch,et al.  Running quark and lepton parameters at various scales , 2013, 1306.6879.

[23]  S. Moch,et al.  The top quark and Higgs boson masses and the stability of the electroweak vacuum , 2012, 1207.0980.

[24]  L. Everett,et al.  Icosahedral (A(5)) Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing , 2008, 0812.1057.

[25]  S. Antusch,et al.  Quark and lepton masses at the GUT scale including supersymmetric threshold corrections , 2008, 0804.0717.

[26]  Alessandro Strumia,et al.  Golden ratio prediction for solar neutrino mixing , 2007, 0705.4559.

[27]  R. Mohapatra,et al.  Neutrino mixings and leptonic CP violation from CKM matrix and Majorana phases , 2006, hep-ph/0611225.

[28]  S. King,et al.  Charged lepton corrections to neutrino mixing angles and CP phases revisited , 2005, hep-ph/0508044.

[29]  R. Mohapatra,et al.  Threshold effects on quasidegenerate neutrinos with high-scale mixing unification , 2005, hep-ph/0501275.

[30]  M. K. Das,et al.  Numerical consistency check between two approaches to radiative corrections for neutrino masses and mixings , 2004, hep-ph/0407185.

[31]  M. Lindner,et al.  Running neutrino masses, mixings and CP phases: Analytical results and phenomenological consequences , 2003, hep-ph/0305273.

[32]  J. Espinosa,et al.  Low-scale supersymmetry breaking: effective description, electroweak breaking and phenomenology , 2003, hep-ph/0301121.

[33]  H. Nishiura,et al.  Universal Texture of Quark and Lepton Mass Matrices , 2002, hep-ph/0209333.

[34]  E. Ma The All-Purpose Neutrino Mass Matrix , 2002, hep-ph/0207352.

[35]  M. Lindner,et al.  Neutrino mass matrix running for non-degenerate see-saw scales , 2002, hep-ph/0203233.

[36]  H. Murayama THEORY OF NEUTRINO MASSES AND MIXINGS , 2002, hep-ph/0201022.

[37]  M. Drees,et al.  Neutrino mass operator renormalization in two Higgs doublet models and the MSSM , 2001, hep-ph/0110366.

[38]  N. Singh Effects of the scale-dependent vacuum expectation values in the renormalisation group analysis of neutrino masses , 2000, hep-ph/0009211.

[39]  S. King,et al.  Inverted hierarchy models of neutrino masses , 2000, hep-ph/0007243.

[40]  S. King,et al.  Renormalisation group analysis of single right-handed neutrino dominance , 2000, hep-ph/0006229.

[41]  S. Pokorski,et al.  Fixed points in the evolution of neutrino mixings , 1999, hep-ph/9910231.

[42]  J. Espinosa,et al.  Nearly degenerate neutrinos, Supersymmetry and radiative corrections , 1999, hep-ph/9905381.

[43]  N. Singh,et al.  Third generation Yukawa couplings unification in supersymmetric SO(10) model , 1998 .

[44]  N. Singh,et al.  Low-energy formulas for neutrino masses with a tan β -dependent hierarchy , 1997, hep-ph/9710328.

[45]  Alan D. Martin,et al.  Note on Scalar Mesons , 1996 .

[46]  Deshpande,et al.  Predictive fermion mass matrix Ansa-umltze in nonsupersymmetric SO(10) grand unification. , 1994, Physical review. D, Particles and fields.

[47]  J. Pantaleone,et al.  Renormalization of the neutrino mass operator , 1993, hep-ph/9309223.

[48]  P. Chankowski,et al.  Renormalization Group Equations for Seesaw Neutrino Masses. , 1993, hep-ph/9306333.

[49]  P. Ramond,et al.  Renormalization-group study of the standard model and its extensions: The standard model. , 1992, Physical review. D, Particles and fields.

[50]  Davidson,et al.  Universal seesaw mechanism? , 1987, Physical review letters.