Vortex shedding behind a square cylinder in transonic flows

This paper is primarily concerned with Mach-number effects on the vortex shedding behind a square cylinder (side length D = 20 mm) in a Reynolds-number range of 0.696 × 105 < Re < 4.137 × 105, and a Mach-number range of 0.1522 < M < 0.9049.Regular periodic vortex shedding is present, irrespective of the appearance of shock waves around a square cylinder. The shape of the vortices is, however, deformed by the shock waves, and each vortex centre becomes non-uniform while the vortex passes through the gap between the upper and lower shock waves. Weak shock waves around the square cylinder do not alter the Strouhal number, but strong shock waves weaken the vortex shedding and increase the Strouhal number suddenly. Acoustic waves have been recorded by the Mach-Zehnder interferometer when the Mach number is close to the critical value. The acoustic waves are generated most strongly at the instant when each vortex hits the foot of the shock waves formed above and below the vortex formation region.From the present work and that of Okajima (1982), it is suggested that the Strouhal number of alternating vortices shed from a square cylinder can be estimated to be about 0.13 in the Reynolds-number range between 102 and 3.4 × 105.