A Legendre spectral element model for sloshing and acoustic analysis in nearly incompressible fluids

A new spectral finite element formulation is presented for modeling the sloshing and the acoustic waves in nearly incompressible fluids. The formulation makes use of the Legendre polynomials in deriving the finite element interpolation shape functions in the Lagrangian frame of reference. The formulated element uses Gauss-Lobatto-Legendre quadrature scheme for integrating the volumetric stiffness and the mass matrices while the conventional Gauss-Legendre quadrature scheme is used on the rotational stiffness matrix to completely eliminate the zero energy modes, which are normally associated with the Lagrangian FE formulation. The numerical performance of the spectral element formulated here is examined by doing the inf-sup test on a standard rectangular rigid tank partially filled with liquid. The eigenvalues obtained from the formulated spectral element are compared with the conventional equally spaced node locations of the h-type Lagrangian finite element and the predicted results show that these spectral elements are more accurate and give superior convergence. The efficiency and robustness of the formulated elements are demonstrated by solving few standard problems involving free vibration and dynamic response analysis with undistorted and distorted spectral elements, and the obtained results are compared with available results in the published literature.

[1]  Ahmed K. Noor,et al.  Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams , 1981 .

[2]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[3]  Lorraine G. Olson,et al.  A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems , 1983 .

[4]  Michael A. Sprague,et al.  Spectral elements and field separation for an acoustic fluid subject to cavitation , 2003 .

[5]  G. C. Feng,et al.  Fluid-Structure Finite Element Vibrational Analysis , 1974 .

[6]  Yavuz Başar,et al.  A general high‐order finite element formulation for shells at large strains and finite rotations , 2003 .

[7]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[8]  Ekkehard Ramm,et al.  A class of equivalent enhanced assumed strain and hybrid stress finite elements , 1999 .

[9]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[10]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[11]  Michael A. Sprague,et al.  Legendre spectral finite elements for structural dynamics analysis , 2007 .

[12]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[13]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[14]  Ranjan Ganguli,et al.  Three‐dimensional sloshing: A consistent finite element approach , 2011 .

[15]  Kyuichiro Washizu,et al.  The boundary element method applied to the analysis of two‐dimensional nonlinear sloshing problems , 1981 .

[16]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[17]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[18]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[19]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[20]  Edward L. Wilson,et al.  Finite elements for the dynamic analysis of fluid‐solid systems , 1983 .

[21]  T. Belytschko,et al.  Membrane Locking and Reduced Integration for Curved Elements , 1982 .

[22]  Srinivasan Gopalakrishnan,et al.  Behaviour of isoparametric quadrilateral family of Lagrangian fluid finite elements , 2002 .

[23]  G. Prathap Field-consistency — toward a science of constrained multi-strain-field finite element formulations , 1986 .

[24]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[25]  T. Belytschko,et al.  Shear and membrane locking in curved C0 elements , 1983 .

[26]  K. Bathe,et al.  The inf-sup test , 1993 .

[27]  Gangan Prathap,et al.  Reduced integration and the shear-flexible beam element , 1982 .

[28]  G. Prathap,et al.  A field-consistent formulation for the eight-noded solid finite element , 1989 .

[29]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[30]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[31]  Isaac Fried,et al.  Finite element mass matrix lumping by numerical integration with no convergence rate loss , 1975 .

[32]  J. Hommel,et al.  EAS concept for higher‐order finite shell elements to eliminate volumetric locking , 2008 .

[33]  Jens Markus Melenk,et al.  Fully discrete hp-finite elements , 1999 .

[34]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[35]  K. Bathe Finite Element Procedures , 1995 .

[36]  Anthony T. Patera,et al.  A Legendre spectral element method for the Stefan problem , 1987 .

[37]  Joel Ferziger,et al.  Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .

[38]  H. Norman Abramson,et al.  The Dynamic Behavior of Liquids in Moving Containers. NASA SP-106 , 1966 .

[39]  Yves Ousset,et al.  A displacement method for the analysis of vibrations of coupled fluid-structure systems , 1978 .