Unidirectional Electronic Structure in the Parent State of Iron-Chalcogenide Superconductor Fe1+δTe

We use scanning tunnelling microscopy and spectroscopy to explore the electronic structure of Fe 1.07 Te which is the parent compound of the iron-chalcogenide superconductors. A unidirectional electronic structure with a period of a 0 (where a 0 is the lattice constant) along the a -axis is observed. The unidirectional pattern is visible within an energy range from approximately -200 to +130 meV. Since the direction of the unidirectional electronic structure coincides with those of the underlying antiferromagnetic and the predicted orbital orders, it is presumable that the observed unidirectional structure is closely tied to these orders and is peculiar to the parent state in iron-based superconductors.

[1]  A. Taleb-Ibrahimi,et al.  Angle-resolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe 2 As 2 , 2011, 1105.5605.

[2]  T. Togashi,et al.  Orbital-Independent Superconducting Gaps in Iron Pnictides , 2011, Science.

[3]  Yayu Wang,et al.  Quasiparticle interference of C2-symmetric surface states in a LaOFeAs parent compound. , 2010, Physical review letters.

[4]  G. Gu,et al.  Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x , 2010, Nature.

[5]  P. McMahon,et al.  In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor , 2010, Science.

[6]  H. Kontani,et al.  Orbital fluctuation theory in iron pnictides: Effects of As-Fe-As bond angle, isotope substitution, and Z2-orbital pocket on superconductivity , 2010, 1008.1765.

[7]  A. P. Sorini,et al.  Orbital order and spontaneous orthorhombicity in iron pnictides , 2010, 1004.4611.

[8]  H. Takagi,et al.  Unconventional s-Wave Superconductivity in Fe(Se,Te) , 2010, Science.

[9]  P. Canfield,et al.  Nematic Electronic Structure in the “Parent” State of the Iron-Based Superconductor Ca(Fe1–xCox)2As2 , 2010, Science.

[10]  H. Kontani,et al.  Orbital-fluctuation-mediated superconductivity in iron pnictides: analysis of the five-orbital Hubbard-Holstein model. , 2009, Physical review letters.

[11]  K. Hashimoto,et al.  Synthesis and characterization of (Ba, Sr)Fe2(As, P)2 iron pnictide superconductors , 2009, 0905.4427.

[12]  M. Golden,et al.  Cleavage surfaces of the BaFe2−xCoxAs2 and FeySe1−xTex superconductors: A combined STM plus LEED study , 2009 .

[13]  H. Sakata,et al.  Local density of states and superconducting gap in the iron chalcogenide superconductor Fe$_{1+δ}$Se$_{1-x}$Te$_{x}$ observed by scanning tunneling spectroscopy , 2009, 0910.1485.

[14]  Congjun Wu,et al.  Spectroscopic imaging scanning tunneling microscopy as a probe of orbital structures and ordering. , 2009, Physical review letters.

[15]  M. Green,et al.  Tunable (deltapi, deltapi)-type antiferromagnetic order in alpha-Fe(Te,Se) superconductors. , 2009, Physical review letters.

[16]  A. Vishwanath,et al.  Kinetic magnetism and orbital order in iron telluride , 2009, 0905.3782.

[17]  W. Yin,et al.  Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. , 2009, Physical review letters.

[18]  Jiansheng Wu,et al.  Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides , 2009, 0905.1704.

[19]  Dung-Hai Lee,et al.  Antiferromagnetically driven electronic correlations in iron pnictides and cuprates , 2009, 0905.1711.

[20]  Peng Cheng,et al.  Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K , 2009, 0904.1732.

[21]  R. Sknepnek,et al.  Orbital coupling and superconductivity in the iron pnictides , 2009, 0903.4473.

[22]  J. Brink,et al.  Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors , 2008, 0811.4104.

[23]  Y. Takano,et al.  Superconductivity in S-substituted FeTe , 2008, 0811.0711.

[24]  Jiangping Hu,et al.  First-order magnetic and structural phase transitions in Fe1+ySexTe1-x , 2008, 0811.0195.

[25]  M. Johannes,et al.  A key role for unusual spin dynamics in ferropnictides , 2008, 0807.3737.

[26]  Dung-Hai Lee,et al.  Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAs-based high-temperature superconductor. , 2008, Physical review letters.

[27]  Wei Bao,et al.  Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors. , 2008, Physical review letters.

[28]  S. Uchida,et al.  How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8+δ , 2008, Nature.

[29]  M. Johannes,et al.  Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.

[30]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[31]  J. Tapp,et al.  LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K , 2008, 0807.2274.

[32]  Fengying Li,et al.  The superconductivity at 18 K in LiFeAs system , 2008, 0806.4688.

[33]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[34]  D. Johrendt,et al.  Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe 2 As 2 , 2008, 0805.4021.

[35]  Z. Tes̆anović,et al.  Multiband magnetism and superconductivity in Fe-based compounds , 2008, 0804.4678.

[36]  H. Mook,et al.  Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems , 2008, Nature.

[37]  R. Arita,et al.  Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx. , 2008, Physical review letters.

[38]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[39]  H. Takagi,et al.  An Intrinsic Bond-Centered Electronic Glass with Unidirectional Domains in Underdoped Cuprates , 2007, Science.

[40]  H. Sakata,et al.  Appearance of new energy gap and periodic local density-of-states modulation in Bi2Sr1.6La0.4CuO6+δ , 2006, cond-mat/0607099.

[41]  H. Grimmer,et al.  Orbital and magnetic ordering in La{sub 0.5}Sr{sub 1.5}MnO{sub 4} studied by soft x-ray resonant scattering , 2005 .

[42]  H. Takagi,et al.  A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2 , 2004, Nature.

[43]  S. Sachdev Order and quantum phase transitions in the cuprate superconductors , 2002, cond-mat/0211005.

[44]  Y. Tomioka,et al.  Interplay between Charge, Orbital, and Magnetic Order in Pr{sub 1-x}Ca{sub x}MnO{sub 3} , 1999, cond-mat/9905285.

[45]  M. Tanaka,et al.  Direct Observation of Charge and Orbital Ordering in La 0.5 Sr 1.5 MnO 4 , 1998 .

[46]  V. J. Emery,et al.  Electronic liquid-crystal phases of a doped Mott insulator , 1997, Nature.

[47]  Y. Tomioka,et al.  Magnetic Ordering and Relation to the Metal-Insulator Transition in Pr 1 − x Sr x MnO 3 and Nd 1 − x Sr x MnO 3 with x ∼ 1 / 2 , 1997 .

[48]  G. Aeppli,et al.  Antiferromagnetic Short Range Order in a Two-Dimensional Manganite Exhibiting Giant Magnetoresistance , 1997 .

[49]  H. Nakanishi,et al.  Soliton Lattice Modulation of Incommensurate Spin Density Wave in Two Dimensional Hubbard Model -A Mean Field Study- , 1990 .

[50]  O. Gunnarsson,et al.  Charged magnetic domain lines and the magnetism of high-Tc oxides. , 1989, Physical review. B, Condensed matter.