A lattice Boltzmann model for axisymmetric thermal flows through porous media

In this paper, a new lattice Boltzmann model at representative elementary volume (REV) scale is proposed for axisymmetric thermal flows in porous media. In this model, a new equilibrium distribution function including porosity is proposed to describe the cases of variable porosity, and simple force term is adopted to achieve a better numerical stability. The numerical experiments, including five benchmark problems, demonstrate that the proposed LBM can be served as a feasible and efficient method for axisymmetric thermal flows through porous media.

[1]  C. Hickox,et al.  A numerical study of natural convection in a vertical, annular, porous layer , 1985 .

[2]  Moh’d A. Al-Nimr,et al.  Improving the performance of double-pipe heat exchangers by using porous substrates , 1999 .

[3]  B. Shi,et al.  An extrapolation method for boundary conditions in lattice Boltzmann method , 2002 .

[4]  J.-P. Petit,et al.  Laminar natural convection in a laterally heated and upper cooled vertical cylindrical enclosure , 1998 .

[5]  Abdulmajeed A. Mohamad,et al.  Heat transfer enhancements in heat exchangers fitted with porous media Part I: constant wall temperature , 2003 .

[6]  Dominique d'Humières,et al.  Multireflection boundary conditions for lattice Boltzmann models. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Chuguang Zheng,et al.  Theory of the lattice Boltzmann equation: Lattice Boltzmann model for axisymmetric flows. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Chang Shu,et al.  Lattice Boltzmann method simulation gas slip flow in long microtubes , 2007 .

[9]  Kambiz Vafai,et al.  Convective flow and heat transfer in variable-porosity media , 1984, Journal of Fluid Mechanics.

[10]  P. Lallemand,et al.  Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .

[11]  Manfred Krafczyk,et al.  Lattice Boltzmann model for incompressible axisymmetric flows. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Chang Shu,et al.  Hybrid lattice Boltzmann finite‐difference simulation of axisymmetric swirling and rotating flows , 2007 .

[13]  Takaji Inamuro,et al.  A NON-SLIP BOUNDARY CONDITION FOR LATTICE BOLTZMANN SIMULATIONS , 1995, comp-gas/9508002.

[14]  Moh’d A. Al-Nimr,et al.  Unsteady non-Darcian forced convection analysis in an annulus partially filled with a porous , 1997 .

[15]  Basant Kumar Jha Free-convection flow through an annular porous medium , 2005 .

[16]  M. Havstad,et al.  Convective heat transfer in vertical cylindrical annuli filled with a porous medium , 1982 .

[17]  F. Kulacki,et al.  Natural convection in a vertical porous annulus , 1984 .

[18]  D. Martínez,et al.  On boundary conditions in lattice Boltzmann methods , 1996 .

[19]  S. Fukusako,et al.  Heat transfer in a confined rectangular cavity packed with porous media , 1978 .

[20]  Forchheimer and Brinkman extended Darcy flow model on natural convection in a vertical cylindrical porous annulus , 1995 .

[21]  Zhenhua Chai,et al.  A novel lattice Boltzmann model for the Poisson equation , 2008 .

[22]  Gui-Hua Tang,et al.  Lattice Boltzmann model for axisymmetric thermal flows. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Jian Guo Zhou,et al.  Axisymmetric lattice Boltzmann method. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  S. Ergun Fluid flow through packed columns , 1952 .

[25]  Manfred Krafczyk,et al.  Simulation of buoyancy-driven flows in a vertical cylinder using a simple lattice Boltzmann model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Yan Peng,et al.  Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method , 2003 .

[27]  T N Phillips,et al.  Numerical validation of a consistent axisymmetric lattice Boltzmann model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  L. Luo,et al.  Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model , 1997 .

[29]  Chuguang Zheng,et al.  Lattice Boltzmann equation for axisymmetric thermal flows , 2010 .

[30]  Chang Shu,et al.  AN AXISYMMETRIC INCOMPRESSIBLE LATTICE BOLTZMANN MODEL FOR PIPE FLOW , 2006 .

[31]  Lu Xiyun,et al.  Numerical study of natural convection flow in a vertical slot , 1999 .

[32]  F. Kulacki,et al.  Natural convection in porous media , 1985, Journal of Fluid Mechanics.

[33]  Zhaoli Guo,et al.  A LATTICE BOLTZMANN MODEL FOR CONVECTION HEAT TRANSFER IN POROUS MEDIA , 2005 .

[34]  P. Cheng,et al.  Thermal dispersion in a porous medium , 1990 .

[35]  G. Neumann Three-dimensional numerical simulation of buoyancy-driven convection in vertical cylinders heated from below , 1990, Journal of Fluid Mechanics.

[36]  Andreas Acrivos,et al.  Buoyancy-driven convection in cylindrical geometries , 1969, Journal of Fluid Mechanics.

[37]  T N Phillips,et al.  Modified lattice Boltzmann model for axisymmetric flows. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Q. Zou,et al.  On pressure and velocity boundary conditions for the lattice Boltzmann BGK model , 1995, comp-gas/9611001.

[39]  C M Care,et al.  Lattice Boltzmann equation hydrodynamics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  David R. Noble,et al.  A consistent hydrodynamic boundary condition for the lattice Boltzmann method , 1995 .

[41]  K. N. Seetharamu,et al.  Convective heat transfer in axisymmetric porous bodies , 1995 .

[42]  Abdulmajeed A. Mohamad,et al.  An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media , 2004 .