Radiative Forcing of Smoke Aerosol Taking into Account the Photochemical Evolution of Its Organic Component: Impact of Illumination Conditions and Surface Albedo

[1]  V. Cachorro,et al.  Integrated water vapor over the Arctic: Comparison between radiosondes and sun photometer observations , 2022, Atmospheric Research.

[2]  T. Zhuravleva,et al.  Impact of the Atmospheric Photochemical Evolution of the Organic Component of Biomass Burning Aerosol on Its Radiative Forcing Efficiency: A Box Model Analysis , 2021, Atmosphere.

[3]  M. Andreae,et al.  Inferring the absorption properties of organic aerosol in Siberian biomass burning plumes from remote optical observations , 2021, Atmospheric Measurement Techniques.

[4]  M. Andreae,et al.  Inferring the absorption properties of organic aerosol in biomass burning plumes from remote optical observations , 2021 .

[5]  V. N. Uzhegov,et al.  Dynamics of optical-microphysical characteristics of smokes from Siberian wildfires in the Big Aerosol Chamber at the stages of smoke generation and aging , 2020, Atmospheric and Ocean Optics.

[6]  Igor B. Konovalov,et al.  Nonlinear features of the atmospheric evolution of the absorption properties of biomass burning aerosol , 2020, Atmospheric and Ocean Optics.

[7]  M. Andreae,et al.  Supplementary material to "Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: Evolution of the aerosol optical properties in Siberian wildfire plumes" , 2020 .

[8]  A. Kokhanovsky,et al.  Physics and Chemistry of the Arctic Atmosphere , 2020 .

[9]  M. Andreae,et al.  Nonlinear behavior of organic aerosol in biomass burning plumes: a microphysical model analysis , 2019, Atmospheric Chemistry and Physics.

[10]  L. P. Golobokova,et al.  Measurements of Physicochemical Characteristics of Atmospheric Aerosol at Research Station Ice Base Cape Baranov in 2018 , 2019, Atmospheric and Oceanic Optics.

[11]  S. Kreidenweis,et al.  Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. , 2019, Environmental science & technology.

[12]  M. Andreae Emission of trace gases and aerosols from biomass burning – an updated assessment , 2019, Atmospheric Chemistry and Physics.

[13]  S. Kreidenweis,et al.  More Than Emissions and Chemistry: Fire Size, Dilution, and Background Aerosol Also Greatly Influence Near‐Field Biomass Burning Aerosol Aging , 2019, Journal of Geophysical Research: Atmospheres.

[14]  Dynamics of the greenhouse gas concentrations in Western Siberia , 2019, Оптика атмосферы и океана.

[15]  L. P. Golobokova,et al.  Comparison of Average Aerosol Characteristics in Neighboring Arctic Regions , 2019, Atmospheric and Oceanic Optics.

[16]  L. P. Golobokova,et al.  Results of the Study of Aerosol Characteristics in the Atmosphere of the Kara and Barents Seas in Summer and Autumn 2016 , 2018, Atmospheric and Oceanic Optics.

[17]  Taneil Uttal,et al.  Seasonality of aerosol optical properties in the Arctic , 2018, Atmospheric Chemistry and Physics.

[18]  T. B. Zhuravleva,et al.  Model Estimates of Dynamics of the Vertical Structure of Solar Absorption and Temperature Effects under Background Conditions and in Extremely Smoke-Laden Atmosphere According to Data of Aircraft Observations , 2018 .

[19]  M. Heimann,et al.  Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia , 2017 .

[20]  K. Markowicz,et al.  Simulations of the effect of intensive biomass burning in July 2015 on Arctic radiative budget , 2017 .

[21]  Andrew A. May,et al.  Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes , 2016 .

[22]  D. Victor,et al.  Response of Arctic temperature to changes in emissions of short-lived climate forcers , 2015 .

[23]  O. Dubovik,et al.  Comprehensive tool for calculation of radiative fluxes: illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics , 2015 .

[24]  P. North,et al.  Smoke aerosol properties and ageing effects for northern temperate and boreal regions derived from AERONET source and age attribution , 2015 .

[25]  E. P. Yausheva,et al.  Optical–microphysical properties of smoke haze from Siberian forest fires in summer 2012 , 2014 .

[26]  S. Madronich,et al.  Multiday production of condensing organic aerosol mass in urban and forest outflow , 2014 .

[27]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[28]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[29]  Alexander,et al.  Light Scattering Reviews 8: Radiative transfer and light scattering , 2013 .

[30]  C. Tomasi,et al.  Dependence of direct aerosol radiative forcing on the optical properties of atmospheric aerosol and underlying surface , 2013 .

[31]  J. Randerson,et al.  The changing radiative forcing of fires: global model estimates for past, present and future , 2012 .

[32]  Jean-Luc Moncet,et al.  Development and recent evaluation of the MT_CKD model of continuum absorption , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  David R. Weise,et al.  Evolution of trace gases and particles emitted by a chaparral fire in California , 2011 .

[34]  T. B. Zhuravleva,et al.  On daytime variations of atmospheric aerosol optical depth and aerosol radiative forcing , 2010 .

[35]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[36]  T. B. Zhuravleva,et al.  Simulation of aerosol direct radiative forcing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters , 2009 .

[37]  M. Witek,et al.  Observations and Modeling of the Surface Aerosol Radiative Forcing during UAE 2 , 2008 .

[38]  G. Anderson,et al.  Radiative impact of boreal smoke in the Arctic: Observed and modeled , 2008 .

[39]  Allen L Robinson,et al.  Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging , 2007, Science.

[40]  T. Bond,et al.  Light Absorption by Carbonaceous Particles: An Investigative Review , 2006 .

[41]  T. Eck,et al.  A review of biomass burning emissions part III: intensive optical properties of biomass burning particles , 2004 .

[42]  C. Gueymard The sun's total and spectral irradiance for solar energy applications and solar radiation models , 2004 .

[43]  P. Quinn,et al.  Influence of relative humidity on aerosol radiative forcing: An ACE‐Asia experiment perspective , 2003 .

[44]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[45]  J. Haywood,et al.  Multi‐spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model , 1997 .

[46]  A. Slingo A GCM Parameterization for the Shortwave Radiative Properties of Water Clouds , 1989 .

[47]  F. X. Kneizys,et al.  AFGL atmospheric constituent profiles (0-120km) , 1986 .