Long-Term climate change commitment and reversibility: An EMIC intercomparison

AbstractThis paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6–6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 resu...

[1]  R. Knutti,et al.  Robustness and uncertainties in the new CMIP5 climate model projections , 2013 .

[2]  Nilay Shah,et al.  High-level techno-economic assessment of negative emissions technologies , 2012 .

[3]  Andrew J. Weaver,et al.  Significant contribution to climate warming from the permafrost carbon feedback , 2012 .

[4]  J. Yin Century to multi‐century sea level rise projections from CMIP5 models , 2012 .

[5]  Andrei P. Sokolov,et al.  Historical and idealized climate model experiments : An EMIC intercomparison , 2012 .

[6]  Dieter Gerten,et al.  A model-based constraint on CO 2 fertilisation , 2012 .

[7]  O. Boucher,et al.  Reversibility in an Earth System model in response to CO2 concentration changes , 2012 .

[8]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[9]  H. Matthews,et al.  Climate response to zeroed emissions of greenhouse gases and aerosols , 2012 .

[10]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[11]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[12]  N. Gillett,et al.  Is the climate response to CO2 emissions path dependent? , 2012 .

[13]  Nebojsa Nakicenovic,et al.  GEA, 2012 : Global Energy Assessment - Toward a Sustainable Future , 2012 .

[14]  N. Nakicenovic,et al.  Global Energy Assessment – Toward a Sustainable Future , 2012 .

[15]  Saud M. Al-Fattah,et al.  Carbon Capture and Storage : Technologies, Policies, Economics, and Implementation Strategies , 2011 .

[16]  A. Eliseev,et al.  Uncertainty of climate response to natural and anthropogenic forcings due to different land use scenarios , 2011 .

[17]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[18]  K. Denman,et al.  Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases , 2011 .

[19]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[20]  S. Marshall,et al.  Ongoing climate change following a complete cessation of carbon dioxide emissions , 2011 .

[21]  G. Roe,et al.  Climate commitment in an uncertain world , 2011 .

[22]  F. Joos,et al.  A Coupled Dynamical Ocean–Energy Balance Atmosphere Model for Paleoclimate Studies , 2011 .

[23]  Gregory C. Johnson,et al.  Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets* , 2010 .

[24]  Benoît Tartinville,et al.  Description of the Earth system model of intermediate complexity LOVECLIM version 1.2 , 2010 .

[25]  Pierre Friedlingstein,et al.  Persistence of climate changes due to a range of greenhouse gases , 2010, Proceedings of the National Academy of Sciences.

[26]  James D. Annan,et al.  Development of a system emulating the global carbon cycle in Earth system models , 2010 .

[27]  W. Landman Climate change 2007: the physical science basis , 2010 .

[28]  T. Delworth,et al.  Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing , 2010 .

[29]  H. Damon Matthews,et al.  Committed climate warming , 2010 .

[30]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[31]  Fortunat Joos,et al.  Sensitivity of Holocene atmospheric CO 2 and the modern carbon budget to early human land use: analyses with a process-based model , 2010 .

[32]  F. Joos,et al.  Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model , 2010 .

[33]  F. Joos,et al.  Reversible and irreversible impacts of greenhouse gas emissions in multi-century projects with a comprehensive climate-carbon model , 2009 .

[34]  Martijn Gough Climate change , 2009, Canadian Medical Association Journal.

[35]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[36]  Alvaro Montenegro,et al.  Lifetime of Anthropogenic Climate Change: Millennial Time Scales of Potential CO2 and Surface Temperature Perturbations , 2009 .

[37]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[38]  N. Meinshausen,et al.  Warming caused by cumulative carbon emissions towards the trillionth tonne , 2009, Nature.

[39]  V. Brovkin,et al.  Atmospheric lifetime of fossil-fuel carbon dioxide , 2009 .

[40]  S. Solomon,et al.  Irreversible climate change due to carbon dioxide emissions , 2009, Proceedings of the National Academy of Sciences.

[41]  A. Weaver,et al.  Setting cumulative emissions targets to reduce the risk of dangerous climate change , 2008, Proceedings of the National Academy of Sciences.

[42]  D. Matthews Climate response to carbon emissions , 2009 .

[43]  L. K. Gohar,et al.  How difficult is it to recover from dangerous levels of global warming? , 2009 .

[44]  Simon J. Cox,et al.  First description of the Minnesota Earth System Model for Ocean biogeochemistry (MESMO 1.0) , 2008 .

[45]  S. Olsen,et al.  Presentation, calibration and validation of the low-order, DCESS Earth System Model (Version 1) , 2008 .

[46]  Julia C. Hargreaves,et al.  Long-term climate commitments projected with climate-carbon cycle models , 2008 .

[47]  David Archer,et al.  The millennial atmospheric lifetime of anthropogenic CO2 , 2008 .

[48]  K. Matsumoto,et al.  Climate and carbon cycle changes under the overshoot scenario , 2008 .

[49]  Ken Caldeira,et al.  Stabilizing climate requires near‐zero emissions , 2008 .

[50]  Alvaro Montenegro,et al.  Long term fate of anthropogenic carbon , 2007 .

[51]  R. Dickinson,et al.  Couplings between changes in the climate system and biogeochemistry , 2007 .

[52]  Y. Yoshida,et al.  Long-term climate response to stabilized and overshoot anthropogenic forcings beyond the twenty-first century , 2006 .

[53]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[54]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[55]  S. Rahmstorf,et al.  The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions , 2005 .

[56]  Sergey Paltsev,et al.  MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation , 2005 .

[57]  T. Wigley The Climate Change Commitment , 2005, Science.

[58]  W. G. Strand,et al.  How Much More Global Warming and Sea Level Rise? , 2005, Science.

[59]  M. Blackmon,et al.  Multi-century ensemble global warming projections using the Community Climate System Model (CCSM3) , 2005 .

[60]  Bill Hare,et al.  How Much Warming are We Committed to and How Much can be Avoided? , 2006 .

[61]  Kristian Lindgren,et al.  Carbon Capture and Storage From Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere , 2006 .

[62]  Haifeng Qian,et al.  How strong is carbon cycle‐climate feedback under global warming? , 2004 .

[63]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[64]  David William Keith,et al.  Climate Strategy with Co2 Capture from the Air , 2006 .

[65]  David W. Keith,et al.  Climate Strategy with Co2 Capture from the Air , 2001 .

[66]  Victor Brovkin,et al.  CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate , 2000 .

[67]  Victor Brovkin,et al.  CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity , 2001 .

[68]  Andrew J. Plater,et al.  Book reviewSea-level change: Roger Revelle; Studies in Geophysics, National Research Council, National Academy Press, Washington, DC, 1990; xii + 246 pp.; USD 29.95, GBP 25.75; ISBN 0-309-04039 , 1992 .

[69]  G.,et al.  Climate Response Times : Dependence on Climate Sensitivity and Ocean Mixing , 2022 .

[70]  V. Weisskopf THE INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS , 2022 .