Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements

Perfect vortex beams are the orbital angular momentum (OAM)-carrying beams with fixed annular intensities, which provide a better source of OAM than traditional Laguerre-Gaussian beams. However, ordinary schemes to obtain the perfect vortex beams are usually bulky and unstable. We demonstrate here a novel generation scheme by designing planar Pancharatnam-Berry (PB) phase elements to replace all the elements required. Different from the conventional approaches based on reflective or refractive elements, PB phase elements can dramatically reduce the occupying volume of system. Moreover, the PB phase element scheme is easily developed to produce the perfect vector beams. Therefore, our scheme may provide prominent vortex and vector sources for integrated optical communication and micromanipulation systems.

[1]  S. Pancharatnam Generalized theory of interference, and its applications , 2013 .

[2]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[3]  S. Wen,et al.  Higher-order laser mode converters with dielectric metasurfaces. , 2015, Optics letters.

[4]  Shuangchun Wen,et al.  Photonic spin Hall effect in metasurfaces: a brief review , 2017 .

[5]  Kimani C Toussaint,et al.  Three-dimensional polarization control in microscopy. , 2006, Physical review letters.

[6]  Kishan Dholakia,et al.  Dynamics of microparticles trapped in a perfect vortex beam , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[7]  D. Nolan,et al.  Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. , 2011, Physical review letters.

[8]  Jinghua Teng,et al.  Visible‐Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices , 2016, Advanced materials.

[9]  P. Kazansky,et al.  Laser material processing with tightly focused cylindrical vector beams , 2016 .

[10]  Q. Zhan Cylindrical vector beams: from mathematical concepts to applications , 2009 .

[11]  D. Grier A revolution in optical manipulation , 2003, Nature.

[12]  Kishan Dholakia,et al.  Generation of high-order Bessel beams by use of an axicon , 2000 .

[13]  Carolina Rickenstorff-Parrao,et al.  Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator. , 2013, Optics letters.

[14]  Y. Saito,et al.  Control of near-field polarizations for nanoscale molecular orientational imaging , 2016 .

[15]  Q. Zhan Trapping metallic Rayleigh particles with radial polarization. , 2004, Optics express.

[16]  Ulises Ruiz,et al.  Optimum generation of annular vortices using phase diffractive optical elements. , 2015, Optics letters.

[17]  Yangjian Cai,et al.  Vector Hermite-Gaussian correlated Schell-model beam. , 2016, Optics express.

[18]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  Chun-qing Gao,et al.  Bessel beams with spatial oscillating polarization , 2016, Scientific Reports.

[20]  S. Ferrari,et al.  Author contributions , 2021 .

[21]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[22]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[23]  Anthony Grbic,et al.  Controlling Vector Bessel Beams with Metasurfaces , 2014 .

[24]  Min Gu,et al.  Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. , 2011, Optics letters.

[25]  Shuangchun Wen,et al.  Realization of polarization evolution on higher-order Poincaré sphere with metasurface , 2014, 1407.1997.

[26]  J. Hörandel,et al.  COSMIC RAYS FROM THE KNEE TO THE SECOND , 2007 .

[27]  P. Kazansky,et al.  Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited] , 2011 .

[28]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[29]  Ulises Ruiz,et al.  Optical manipulation using optimal annular vortices. , 2016, Optics letters.

[30]  R. Singh,et al.  Generating a perfect quantum optical vortex , 2016, 1603.00321.

[31]  G. K. Samanta,et al.  Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons , 2016, Scientific Reports.

[32]  V. Arrizon,et al.  Simple technique for generating the perfect optical vortex. , 2014, Optics letters.

[33]  Chonglei Zhang,et al.  Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device , 2016 .

[34]  T G Brown,et al.  Longitudinal field modes probed by single molecules. , 2001, Physical review letters.

[35]  Erez Hasman,et al.  Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics , 2003 .

[36]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[37]  Qiwen Zhan,et al.  Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. , 2006, Optics letters.

[38]  Leslie Rusch,et al.  Perfect vortex beam: Fourier transformation of a Bessel beam. , 2015, Optics letters.

[39]  Non-diffracting speckles of a perfect vortex beam , 2016 .

[40]  Jianlin Zhao,et al.  Generation of perfect vectorial vortex beams. , 2016, Optics letters.

[41]  L. Marrucci,et al.  Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation , 2006, 0712.0101.

[42]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[43]  Erez Hasman,et al.  Formation of helical beams by use of Pancharatnam-Berry phase optical elements. , 2002, Optics letters.