Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review.

Considerable efforts have been devoted to enhancing the photocatalytic activity and solar energy utilization of photocatalysts. The fabrication of type II heterostructures plays an important role in photocatalysts modification and has been extensively studied. In this review, we briefly trace the application of type II heterostructured semiconductors in the area of environmental remediation and water splitting, summarize major fabrication methods, describe some of the progress and resulting achievements, and discuss the future prospects. The scope of this review covers a variety of type II heterostructures, focusing particularly on TiO2 and ZnO based visible light driven type II 0D and 1D heterostructured photocatalysts. Some other low dimensional nanomaterials which have shown high-performance photocatalysis are also presented. We expect this review to provide a guideline for readers to gain a clear picture of fabrication and application of type II heterostructures.

[1]  Zhenxing Wang,et al.  ZnO/ZnSxSe1−x/ZnSe double-shelled coaxial heterostructure: Enhanced photoelectrochemical performance and its optical properties study , 2012 .

[2]  X. Duan,et al.  Towards highly efficient photocatalysts using semiconductor nanoarchitectures , 2012 .

[3]  Richard J. Campbell,et al.  China and the United States-A Comparison of Green Energy Programs and Policies [April 30, 2014] , 2013 .

[4]  Effective utilization of visible light (including lambda > 600 nm) in phenol degradation with p-silicon nanowire/TiO2 core/shell heterojunction array cathode. , 2009, Environmental science & technology.

[5]  Ichiro Yamada,et al.  ZnO-ZnGa2O4 core-shell nanowire array for stable photoelectrochemical water splitting. , 2012, Nanoscale.

[6]  M. Imai,et al.  A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation , 2002 .

[7]  M. Seol,et al.  Highly Efficient Photoelectrochemical Hydrogen Generation Using Hierarchical ZnO/WOx Nanowires Cosensitized with CdSe/CdS , 2011 .

[8]  Y. Nicolau Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process , 1985 .

[9]  Yiwen Tang,et al.  TiO2@CdS core–shell nanorods films: Fabrication and dramatically enhanced photoelectrochemical properties , 2007 .

[10]  S. Icli,et al.  Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight , 2001 .

[11]  W. Jaegermann,et al.  Nanostructured SnO2-ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. , 2012, Inorganic chemistry.

[12]  Didier Robert,et al.  Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant , 2004 .

[13]  Xiaohong Wang,et al.  Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. , 2011, ACS applied materials & interfaces.

[14]  Fan Zuo,et al.  Visible light-driven α-Fe₂O₃ nanorod/graphene/BiV₁-xMoxO₄ core/shell heterojunction array for efficient photoelectrochemical water splitting. , 2012, Nano letters.

[15]  Fu-Ren F. Fan,et al.  Rapid Screening of Effective Dopants for Fe2O3 Photocatalysts with Scanning Electrochemical Microscopy and Investigation of Their Photoelectrochemical Properties , 2009 .

[16]  Muhammad Safdar,et al.  ZnO/ZnSxSe1−x core/shell nanowire arrays as photoelectrodes with efficient visible light absorption , 2012 .

[17]  Xueqin Liu,et al.  Synthesis of one-dimensional TiO2/V2O5 branched heterostructures and their visible light photocatalytic activity towards Rhodamine B , 2011, Nanotechnology.

[18]  Hua Wang,et al.  CdS Quantum Dots-Sensitized TiO2 Nanorod Array on Transparent Conductive Glass Photoelectrodes , 2010 .

[19]  Jian Shi,et al.  Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. , 2011, Nano letters.

[20]  Yajun Wang,et al.  Dramatic Activity of C3N4/BiPO4 Photocatalyst with Core/Shell Structure Formed by Self‐Assembly , 2012 .

[21]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[22]  Yajun Wang,et al.  Synthesis of ZnWO4 nanorods with [1 0 0] orientation and enhanced photocatalytic properties , 2010 .

[23]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[24]  Kijung Yong,et al.  Solution-Based Synthesis of a CdS Nanoparticle/ZnO Nanowire Heterostructure Array , 2009 .

[25]  Liang Li,et al.  ZnS nanostructures: From synthesis to applications , 2011 .

[26]  G. Jung,et al.  Composition-tuned ZnO--CdSSe core--shell nanowire arrays. , 2010, ACS nano.

[27]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[28]  M. Seol,et al.  Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer , 2010 .

[29]  Jun He,et al.  Graphite-like C3N4 hybridized ZnWO4 nanorods: Synthesis and its enhanced photocatalysis in visible light , 2012 .

[30]  Lin-Wang Wang,et al.  Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. , 2007, Nano letters.

[31]  S. Luo,et al.  Fabrication of CdSe Nanoparticles Sensitized Long TiO2 Nanotube Arrays for Photocatalytic Degradation of Anthracene-9-carbonxylic Acid under Green Monochromatic Light , 2010 .

[32]  Hongzheng Chen,et al.  Si/ZnO core–shell nanowire arrays for photoelectrochemical water splitting , 2011 .

[33]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[34]  J. S. Lee,et al.  Three-dimensional type II ZnO/ZnSe heterostructures and their visible light photocatalytic activities. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[35]  Jianqiang Yu,et al.  Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4 , 2006 .

[36]  Shiwei Lin,et al.  Free-standing open-ended TiO2 nanotube membranes and their promising through-hole applications , 2012 .

[37]  Y. Tong,et al.  Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[38]  T. Andreu,et al.  Enhanced photoelectrochemical activity of an excitonic staircase in CdS@TiO2 and CdS@anatase@rutile TiO2 heterostructures , 2012 .

[39]  Yongfa Zhu,et al.  New type of BiPO(4) oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. , 2010, Environmental science & technology.

[40]  Hyunwoong Park,et al.  Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production , 2008 .

[41]  Guojun Du,et al.  Interface dominated high photocatalytic properties of electrostatic self-assembled Ag(2)O/TiO(2) heterostructure. , 2010, Physical chemistry chemical physics : PCCP.

[42]  A. Ganguli,et al.  Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core–Shell Nanorods , 2012 .

[43]  Yajun Wang,et al.  Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization , 2010 .

[44]  P. Boule,et al.  Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions , 2001 .

[45]  R. Saito,et al.  Polar interface-induced improvement in high photocatalytic hydrogen evolution over ZnO–CdS heterostructures , 2011 .

[46]  Bunsho Ohtani,et al.  Correlation between Some Physical Properties of Titanium Dioxide Particles and Their Photocatalytic Activity for Some Probe Reactions in Aqueous Systems , 2002 .

[47]  M. Trari,et al.  CuAlO2/TiO2 heterojunction applied to visible light H2 production , 2007 .

[48]  Yajun Wang,et al.  Enhanced photoelectric catalytic degradation of methylene blue via TiO2 nanotube arrays hybridized with graphite-like carbon , 2011 .

[49]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[50]  Kijung Yong,et al.  Type-II CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process: enhanced photocatalytic activity. , 2008, Chemical communications.

[51]  T. Peng,et al.  Preparation of AgIn5S8/TiO2 Heterojunction Nanocomposite and Its Enhanced Photocatalytic H2 Production Property under Visible Light , 2013 .

[52]  Zhike He,et al.  Preparation of photosensitized nanocrystalline TiO2 hydrosol by nanosized CdS at low temperature , 2006, Nanotechnology.

[53]  R. Könenkamp,et al.  Nanostructure Transfer in Semiconductors by Ion Exchange , 2003 .

[54]  G. Jung,et al.  CdSSe layer-sensitized TiO2 nanowire arrays as efficient photoelectrodes , 2011 .

[55]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[56]  Zhi Zheng,et al.  Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity , 2003 .

[57]  S. Paria,et al.  Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. , 2012, Chemical reviews.

[58]  J. Baeza,et al.  Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions , 2002 .

[59]  Ji-Beom Yoo,et al.  Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays , 2013 .

[60]  Lin-wang Wang,et al.  "Quantum coaxial cables" for solar energy harvesting. , 2007, Nano letters.

[61]  A. Kudo,et al.  H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+ with 6s2 Configuration and d0 Transition Metal Ions , 1999 .

[62]  Y. Chen,et al.  Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications , 2010 .

[63]  P. Chu,et al.  Synthesis and Photocatalytic Activity of Highly Ordered TiO2 and SrTiO3/TiO2 Nanotube Arrays on Ti Substrates , 2010 .

[64]  K. Hadjiivanov,et al.  Surface chemistry of titania (anatase) and titania-supported catalysts , 1996 .

[65]  Jun He,et al.  Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4 , 2012 .

[66]  J. S. Lee,et al.  Porous ZnO-ZnSe nanocomposites for visible light photocatalysis. , 2012, Nanoscale.

[67]  Juan Zhou,et al.  Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe(2)O(3)/ZnO core-shell heterostructures. , 2012, ACS applied materials & interfaces.

[68]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[69]  Tomas Edvinsson,et al.  Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime , 2007 .

[70]  L. Samuelson,et al.  Growth and Optical Properties of Strained GaAs−GaxIn1-xP Core−Shell Nanowires , 2005 .

[71]  Jiaguo Yu,et al.  Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[72]  Y. Lin,et al.  Porous Co3O4/NiO core/shell nanowire array with enhanced catalytic activity for methanol electro-oxidation , 2013 .

[73]  A. Bard,et al.  Heterogeneous Photocatalytic Preparation of Supported Catalysts. Photodeposition of Platinum on TiO2 Powder and Other Substrates , 1978 .

[74]  K. Dick,et al.  Recent advances in semiconductor nanowire heterostructures , 2011 .

[75]  M. Seol,et al.  Novel nanowire array based highly efficient quantum dot sensitized solar cell. , 2010, Chemical communications.

[76]  A. Heller Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films , 1996 .

[77]  M. Shim,et al.  Prospects for Strained Type-II Nanorod Heterostructures , 2011 .

[78]  Quan Li,et al.  Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties. , 2010, ACS nano.

[79]  Qiao-juan Gong,et al.  Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core–shell nanorod arrays on fluorine-doped tin oxide , 2012 .

[80]  A. Patra,et al.  Photocatalytic properties of semiconductor SnO2/CdS heterostructure nanocrystals , 2012 .

[81]  Peng Wang,et al.  Highly Photocatalytic ZnO/In2O3 Heteronanostructures Synthesized by a Coprecipitation Method , 2009 .

[82]  M. J. Chen,et al.  Heterogeneous lollipop-like V2O5/ZnO array: a promising composite nanostructure for visible light photocatalysis. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[83]  Dong-Hwang Chen,et al.  Decoration of PbS nanoparticles on Al-doped ZnO nanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting , 2013 .

[84]  Rujia Zou,et al.  Fabrication of ZnO/CdS/Cu2ZnSnS4 p–n heterostructure nanorod arrays via a solution-based route , 2013 .

[85]  Jinping Liu,et al.  Composition-Graded ZnxCd1–xSe@ZnO Core–Shell Nanowire Array Electrodes for Photoelectrochemical Hydrogen Generation , 2012 .

[86]  Lihong Dong,et al.  Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres , 2007 .

[87]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[88]  K. Chattopadhyay,et al.  Three dimensional Ag2O/TiO2 type-II (p-n) nanoheterojunctions for superior photocatalytic activity. , 2013, ACS applied materials & interfaces.

[89]  C. F. Ng,et al.  TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties , 2012 .

[90]  J. Jang,et al.  Location and State of Pt in Platinized CdS/TiO2 Photocatalysts for Hydrogen Production from Water under Visible Light , 2008 .

[91]  S. Chaudhuri,et al.  Synthesis and Optical and Electrical Properties of CdS/ZnS Core/Shell Nanorods , 2007 .

[92]  C. Lokhande,et al.  Chemical deposition method for metal chalcogenide thin films , 2000 .

[93]  Z. Yin,et al.  Full Solution‐Processed Synthesis of All Metal Oxide‐Based Tree‐like Heterostructures on Fluorine‐Doped Tin Oxide for Water Splitting , 2012, Advanced materials.

[94]  Vertically aligned ZnO–ZnGa2O4 core–shell nanowires: from synthesis to optical properties , 2012, Journal of Nanoparticle Research.

[95]  P. Kamat Photoinduced transformations in semiconductormetal nanocomposite assemblies , 2002 .

[96]  Y. Hsu,et al.  Type-II nanorod heterostructure formation through one-step cation exchange. , 2013, Nanoscale.

[97]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[98]  G. Shen,et al.  Thickness-dependent photocatalytic performance of ZnO nanoplatelets. , 2006, The journal of physical chemistry. B.

[99]  Hongtao Yu,et al.  g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation , 2012 .

[100]  Yueping Fang,et al.  A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties , 2012 .

[101]  Lih-Juann Chen,et al.  Three-dimensional heterostructured ZnSe nanoparticles/Si wire arrays with enhanced photodetection and photocatalytic performances , 2013 .

[102]  Zhengping Fu,et al.  Construction of Z-scheme type CdS–Au–TiO2 hollow nanorod arrays with enhanced photocatalytic activity , 2009 .

[103]  M. Beard,et al.  PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. , 2006, Journal of the American Chemical Society.

[104]  Tsuyoshi Takata,et al.  Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator. , 2005, Chemical communications.

[105]  Dongsheng Xu,et al.  Fabrication of Poly(3-hexylthiophene)/CdS/ZnO Core–Shell Nanotube Array for Semiconductor-Sensitized Solar Cell , 2012 .

[106]  Wenzhong Wang,et al.  Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6. , 2012, ACS applied materials & interfaces.

[107]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[108]  A. Nozik Quantum dot solar cells , 2002 .

[109]  Quan Li,et al.  Microemulsion-mediated solvothermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalystElectronic supplementary information (ESI) available: UV-visible absorption spectra, XRD patterns and EPR spectrum. See http://www.rsc.org/suppdata/cc/b3/b302418k/ , 2003 .

[110]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[111]  Yajun Wang,et al.  Enhancement of photoelectric catalytic activity of TiO2 film via Polyaniline hybridization , 2011 .

[112]  J. Hsu,et al.  In Situ Chemical Oxidation of Ultrasmall MoOx Nanoparticles in Suspensions , 2012 .

[113]  Shui-Tong Lee,et al.  CdS/CdSe Double-Sensitized ZnO Nanocable Arrays Synthesized by Chemical Solution Method and Their Photovoltaic Applications , 2012 .

[114]  Cheng-Lin Tsai,et al.  Integration of type II nanorod heterostructures into photovoltaics. , 2011, ACS nano.

[115]  Rui Shi,et al.  Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4 , 2011 .

[116]  Yat Li,et al.  Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. , 2012, Nanoscale.

[117]  Qi Li,et al.  Composite photocatalyst of nitrogen and fluorine codoped titanium oxide nanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible light photocatalytic performance. , 2010, Environmental science & technology.

[118]  Hao Wang,et al.  Double-shelled ZnO/CdSe/CdTe nanocable arrays for photovoltaic applications: microstructure evolution and interfacial energy alignment , 2012 .

[119]  V. Subramanian,et al.  1D CdS/PbS heterostructured nanowire synthesis using cation exchange. , 2012, Chemical communications.

[120]  Meng Sun,et al.  Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation. , 2009, Environmental science & technology.

[121]  W. Ho,et al.  Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles , 2006 .

[122]  Quan Li,et al.  Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis , 2013 .

[123]  Weihua Tang,et al.  Synthesis and photocatalytic activity of TiO2@CdS and CdS@TiO2 double-shelled hollow spheres , 2012 .