Constructions and noise threshold of topological subsystem codes

Topological subsystem codes proposed recently by Bombin are quantum error-correcting codes defined on a two-dimensional grid of qubits that permit reliable quantum information storage with a constant error threshold. These codes require only the measurement of two-qubit nearest-neighbor operators for error correction. In this paper, we demonstrate that topological subsystem codes (TSCs) can be viewed as generalizations of Kitaev's honeycomb model to 3-valent hypergraphs. This new connection provides a systematic way of constructing TSCs and analyzing their properties. We also derive a necessary and sufficient condition under which a syndrome measurement in a subsystem code can be reduced to measurements of the gauge group generators. Furthermore, we propose and implement some candidate decoding algorithms for one particular TSC assuming perfect error correction. Our Monte Carlo simulations indicate that this code, which we call the five-square code, has a threshold against depolarizing noise of at least 2%.

[1]  Peter Brucker The Chinese Postman Problem for Mixed Graphs , 1980, WG.

[2]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[5]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[7]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[8]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[9]  Michael A. Nielsen,et al.  Quantum Computation and Quantum Information Theory , 2000 .

[10]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[11]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[12]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[13]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[14]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[15]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[16]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[17]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[18]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[19]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[20]  Hong Yao,et al.  Exact chiral spin liquid with non-Abelian anyons. , 2007, Physical review letters.

[21]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[22]  Andrew W. Cross,et al.  A comparative code study for quantum fault tolerance , 2007, Quantum Inf. Comput..

[23]  M. A. Martin-Delgado,et al.  Quantum measurements and gates by code deformation , 2007, 0704.2540.

[24]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[25]  B. Terhal,et al.  A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes , 2008, 0810.1983.

[26]  A. G. Fowler,et al.  Threshold error rates for the toric and surface codes , 2009, 0905.0531.

[27]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[28]  Sergey Bravyi,et al.  Topological quantum order: Stability under local perturbations , 2010, 1001.0344.

[29]  David Poulin,et al.  A renormalization group decoding algorithm for topological quantum codes , 2010, 2010 IEEE Information Theory Workshop.

[30]  Sergey Bravyi,et al.  Stabilizer subsystem codes with spatially local generators , 2010, 2010 IEEE Information Theory Workshop.

[31]  Austin G. Fowler,et al.  Quantum computing with nearest neighbor interactions and error rates over 1 , 2010, 1009.3686.

[32]  H. Bombin Clifford gates by code deformation , 2010, 1006.5260.

[33]  S. Bravyi Subsystem codes with spatially local generators , 2010, 1008.1029.

[34]  K. Brown,et al.  Topological subsystem codes from graphs and hypergraphs , 2012, 1207.0479.