On an example of finite hybrid quasi-Monte Carlo point sets

In this paper, we consider finite hybrid point sets in the unit cube. The components of these stem from two well known types of low discrepancy point sets, namely Hammersley point sets on the one hand, and lattice point sets in the sense of Korobov and Hlawka on the other hand. As a quality measure, we consider the star discrepancy, which gives information about the quality of distribution of finite or infinite sequences. We present existence results for finite hybrid point sets with low discrepancy. Thereby, we make analogous results for infinite sequences more explicit in the sense that, theoretically, it is now possible to find such finite hybrid low discrepancy point sets.

[1]  H. Niederreiter Discrepancy bounds for hybrid sequences involving matrix-method pseudorandom vectors , 2011 .

[2]  Harald Niederreiter,et al.  On the discrepancy of some hybrid sequences , 2009 .

[3]  F. Pillichshammer,et al.  Discrepancy Theory and Quasi-Monte Carlo Integration , 2014 .

[4]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[5]  Igor E. Shparlinski,et al.  Exponential sums in coding theory, cryptology and algorithms , 2002 .

[6]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[7]  Harald Niederreiter,et al.  Further discrepancy bounds and an Erdös–Turán–Koksma inequality for hybrid sequences , 2010 .

[8]  S. Joe Component by Component Construction of Rank-1 Lattice Rules HavingO(n-1(In(n))d) Star Discrepancy , 2004 .

[9]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2002 , 2004 .

[10]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[11]  Harald Niederreiter,et al.  Improved discrepancy bounds for hybrid sequences involving Halton sequences , 2012 .

[12]  Jerome Spanier,et al.  Quasi-Monte Carlo Methods for Particle Transport Problems , 1995 .

[13]  Hybrid Function Systems in the Theory of Uniform Distribution of Sequences , 2012 .

[14]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[15]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[16]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[17]  Michael Gnewuch On probabilistic results for the discrepancy of a hybrid-Monte Carlo sequence , 2009, J. Complex..

[18]  E. Hlawka Zur angenäherten Berechnung mehrfacher Integrale , 1962 .

[19]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .

[20]  Peter Kritzer,et al.  Distribution Properties of Generalized van der Corput-Halton Sequences and their Subsequences , 2009 .

[21]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[22]  H. Niederreiter Existence of good lattice points in the sense of Hlawka , 1978 .

[23]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[24]  Gerhard Larcher,et al.  Metrical results on the discrepancy of Halton–Kronecker sequences , 2012 .

[25]  Peter Kritzer,et al.  ON HYBRID SEQUENCES BUILT FROM NIEDERREITER–HALTON SEQUENCES AND KRONECKER SEQUENCES , 2011, Bulletin of the Australian Mathematical Society.