Spatiotemporal Data Clustering: A Survey of Methods

Large quantities of spatiotemporal (ST) data can be easily collected from various domains such as transportation, social media analysis, crime analysis, and human mobility analysis. The development of ST data analysis methods can uncover potentially interesting and useful information. Due to the complexity of ST data and the diversity of objectives, a number of ST analysis methods exist, including but not limited to clustering, prediction, and change detection. As one of the most important methods, clustering has been widely used in many applications. It is a process of grouping data with similar spatial attributes, temporal attributes, or both, from which many significant events and regular phenomena can be discovered. In this paper, some representative ST clustering methods are reviewed, most of which are extended from spatial clustering. These methods are broadly divided into hypothesis testing-based methods and partitional clustering methods that have been applied differently in previous research. Research trends and the challenges of ST clustering are also discussed.

[1]  Y. Chen,et al.  Pattern Characteristics of Foreshock Sequences , 1999 .

[2]  María Dolores Ugarte,et al.  A two-stage approach to estimate spatial and spatio-temporal disease risks in the presence of local discontinuities and clusters , 2019, Statistical methods in medical research.

[3]  Salvatore Sessa,et al.  The extended fuzzy C-means algorithm for hotspots in spatio-temporal GIS , 2011, Expert Syst. Appl..

[4]  M. Kulldorff,et al.  A Space–Time Permutation Scan Statistic for Disease Outbreak Detection , 2005, PLoS medicine.

[5]  Shan Jiang,et al.  Discovering urban spatial-temporal structure from human activity patterns , 2012, UrbComp '12.

[6]  Manisha Naik Gaonkar,et al.  AutoEpsDBSCAN : DBSCAN with Eps Automatic for Large Dataset , 2013 .

[7]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[8]  Toshiro Tango,et al.  International Journal of Health Geographics a Flexibly Shaped Space-time Scan Statistic for Disease Outbreak Detection and Monitoring , 2022 .

[9]  Derya Birant,et al.  An algorithm to discover spatial–temporal distributions of physical seawater characteristics and a case study in Turkish seas , 2006 .

[10]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[11]  Shashi Shekhar,et al.  Spatiotemporal Data Mining: A Computational Perspective , 2015, ISPRS Int. J. Geo Inf..

[12]  Jay Lee,et al.  Exploring spatiotemporal clusters based on extended kernel estimation methods , 2017, Int. J. Geogr. Inf. Sci..

[13]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[14]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[15]  Jiong Yang,et al.  STING: A Statistical Information Grid Approach to Spatial Data Mining , 1997, VLDB.

[16]  Andrew W. Moore,et al.  Detection of spatial and spatio-temporal clusters , 2006 .

[17]  Gary Higgs,et al.  Visualising space and time in crime patterns: A comparison of methods , 2007, Comput. Environ. Urban Syst..

[18]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[19]  Eric M. Delmelle,et al.  Visualizing the impact of space-time uncertainties on dengue fever patterns , 2014, Int. J. Geogr. Inf. Sci..

[20]  Chenghu Zhou,et al.  DECODE: a new method for discovering clusters of different densities in spatial data , 2009, Data Mining and Knowledge Discovery.

[21]  Esa Alhoniemi,et al.  Clustering of the self-organizing map , 2000, IEEE Trans. Neural Networks Learn. Syst..

[22]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[23]  Min Wang,et al.  Mining Spatial-temporal Clusters from Geo-databases , 2006, ADMA.

[24]  Myra Spiliopoulou,et al.  C-DBSCAN: Density-Based Clustering with Constraints , 2009, RSFDGrC.

[25]  Stefan Peters,et al.  Visualizing Crowd Movement Patterns Using a Directed Kernel Density Estimation , 2013 .

[26]  M. Kulldorff A spatial scan statistic , 1997 .

[27]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[28]  Maurizio Ripepe,et al.  Foreshock sequence of September 26th, 1997 Umbria-Marche earthquakes , 2000 .

[29]  Virgílio A. F. Almeida,et al.  Dengue surveillance based on a computational model of spatio-temporal locality of Twitter , 2011, WebSci '11.

[30]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[31]  Martin Kulldorff,et al.  Prospective time periodic geographical disease surveillance using a scan statistic , 2001 .

[32]  A. Raftery,et al.  Nearest-Neighbor Clutter Removal for Estimating Features in Spatial Point Processes , 1998 .

[33]  Tessa K Anderson,et al.  Kernel density estimation and K-means clustering to profile road accident hotspots. , 2009, Accident; analysis and prevention.

[34]  Huan Liu,et al.  Mining social media with social theories: a survey , 2014, SKDD.

[35]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[36]  P. Diggle A point process modeling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point , 1990 .

[37]  T. Tango,et al.  International Journal of Health Geographics a Flexibly Shaped Spatial Scan Statistic for Detecting Clusters , 2005 .

[38]  Tao Cheng,et al.  Spatiotemporal Data Mining , 2017, Encyclopedia of GIS.

[39]  Aidong Zhang,et al.  WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases , 1998, VLDB.

[40]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[41]  Derya Birant,et al.  ST-DBSCAN: An algorithm for clustering spatial-temporal data , 2007, Data Knowl. Eng..

[42]  Tao Cheng,et al.  Event Detection using Twitter: A Spatio-Temporal Approach , 2014, PloS one.

[43]  G. Jacquez A k nearest neighbour test for space-time interaction. , 1996, Statistics in medicine.

[44]  Tomoki Nakaya,et al.  Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.

[45]  Anuj Karpatne,et al.  Spatio-Temporal Data Mining , 2017, ACM Comput. Surv..

[46]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[47]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[48]  Zhilin Li,et al.  A Multiscale Approach for Spatio‐Temporal Outlier Detection , 2006, Trans. GIS.

[49]  Eric M. Delmelle,et al.  Spatio-Temporal Patterns of Dengue Fever in Cali, Colombia , 2013, Int. J. Appl. Geospat. Res..

[50]  Duncan Lee,et al.  A Bayesian space–time model for clustering areal units based on their disease trends , 2018, Biostatistics.

[51]  T. Tango,et al.  A Space–Time Scan Statistic for Detecting Emerging Outbreaks , 2011, Biometrics.

[52]  Kunihiko Shimazaki,et al.  Seismicity Patterns, their Statistical Significance and Physical Meaning , 1999 .

[53]  Shashi Shekhar,et al.  Identifying patterns in spatial information: A survey of methods , 2011, WIREs Data Mining Knowl. Discov..

[54]  E G Knox,et al.  The Detection of Space‐Time Interactions , 1964 .

[55]  David S. Matteson,et al.  Predicting Ambulance Demand: a Spatio-Temporal Kernel Approach , 2015, KDD.

[56]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[57]  Peng Liu,et al.  VDBSCAN: Varied Density Based Spatial Clustering of Applications with Noise , 2007, 2007 International Conference on Service Systems and Service Management.

[58]  Chenghu Zhou,et al.  Please Scroll down for Article International Journal of Geographical Information Science Windowed Nearest Neighbour Method for Mining Spatio-temporal Clusters in the Presence of Noise Windowed Nearest Neighbour Method for Mining Spatio-temporal Clusters in the Presence of Noise , 2022 .

[59]  Shashi Shekhar,et al.  Spatial and Spatiotemporal Data Mining: Recent Advances , 2008 .

[60]  Ranga Raju Vatsavai,et al.  Spatiotemporal data mining in the era of big spatial data: algorithms and applications , 2012, BigSpatial '12.

[61]  Asieh Ghanbarpour,et al.  EXDBSCAN: An extension of DBSCAN to detect clusters in multi-density datasets , 2014, 2014 Iranian Conference on Intelligent Systems (ICIS).

[62]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[63]  M. Kulldorff,et al.  The Knox Method and Other Tests for Space‐Time Interaction , 1999, Biometrics.

[64]  G. Knox,et al.  Detection of Low Intensity Epidemicity , 1963, British journal of preventive & social medicine.

[65]  Peter J. Diggle,et al.  Statistical Analysis of Spatial and Spatio-Temporal Point Patterns , 2013 .

[66]  Jiangfeng She,et al.  Using Individual GPS Trajectories to Explore Foodscape Exposure: A Case Study in Beijing Metropolitan Area , 2018, International journal of environmental research and public health.

[67]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[68]  Haojie Zhu,et al.  A Spatio-Temporal Kernel Density Estimation Framework for Predictive Crime Hotspot Mapping and Evaluation , 2018, Applied Geography.

[69]  Jiawei Han,et al.  CLARANS: A Method for Clustering Objects for Spatial Data Mining , 2002, IEEE Trans. Knowl. Data Eng..

[70]  Lior Rokach,et al.  Clustering Methods , 2005, The Data Mining and Knowledge Discovery Handbook.

[71]  John F. Roddick,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[72]  Chin-Teng Lin,et al.  A review of clustering techniques and developments , 2017, Neurocomputing.

[73]  Zhilin Li,et al.  A MULTISCALE APPROACH TO DETECT SPATIAL-TEMPORAL OUTLIERS , 2004 .