Key roles of β-glucosidase BglA for the catabolism of both laminaribiose and cellobiose in the lignocellulolytic bacterium Clostridium thermocellum.

[1]  E. Bayer,et al.  Essential autoproteolysis of bacterial anti-σ factor RsgI for transmembrane signal transduction , 2023, Science advances.

[2]  Gegu Chen,et al.  Hemicellulose: Structure, Chemical Modification, and Application , 2023, Progress in Polymer Science.

[3]  Q. Cui,et al.  Glycoside Hydrolase Family 48 Cellulase: A Key Player in Cellulolytic Bacteria for Lignocellulose Biorefinery , 2023, Fermentation.

[4]  E. Bayer,et al.  Deciphering Cellodextrin and Glucose Uptake in Clostridium thermocellum , 2022, mBio.

[5]  Katherine J Chou,et al.  Genome-Wide Transcription Factor DNA Binding Sites and Gene Regulatory Networks in Clostridium thermocellum , 2021, Frontiers in Microbiology.

[6]  Q. Cui,et al.  Structural insight into a GH1 β-glucosidase from the oleaginous microalga, Nannochloropsis oceanica. , 2020, International journal of biological macromolecules.

[7]  Q. Cui,et al.  Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. , 2020, Biotechnology advances.

[8]  E. Bayer,et al.  Directed Evolution of Clostridium thermocellum β-Glucosidase A Towards Enhanced Thermostability , 2019, International journal of molecular sciences.

[9]  A. Goyal,et al.  Structure and biochemical characterization of glucose tolerant β-1,4 glucosidase (HtBgl) of family 1 glycoside hydrolase from Hungateiclostridium thermocellum. , 2019, Carbohydrate research.

[10]  E. Bayer,et al.  Alternative σI/anti-σI factors represent a unique form of bacterial σ/anti-σ complex , 2019, Nucleic acids research.

[11]  A. Carvalho,et al.  Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. , 2018, International journal of biological macromolecules.

[12]  Kok-Gan Chan,et al.  Purification and characterization of a novel GH1 beta-glucosidase from Jeotgalibacillus malaysiensis. , 2018, International journal of biological macromolecules.

[13]  E. Bayer,et al.  Regulation of biomass degradation by alternative σ factors in cellulolytic clostridia , 2018, Scientific Reports.

[14]  Q. Cui,et al.  Inducing effects of cellulosic hydrolysate components of lignocellulose on cellulosome synthesis in Clostridium thermocellum , 2018, Microbial biotechnology.

[15]  R. Field,et al.  Cellodextrin phosphorylase from Ruminiclostridium thermocellum: X-ray crystal structure and substrate specificity analysis , 2017, Carbohydrate research.

[16]  C. D. Cox,et al.  The LacI family protein GlyR3 co-regulates the celC operon and manB in Clostridium thermocellum , 2017, Biotechnology for Biofuels.

[17]  Q. Cui,et al.  Efficient whole-cell-catalyzing cellulose saccharification using engineered Clostridium thermocellum , 2017, Biotechnology for Biofuels.

[18]  M. Syed,et al.  LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313 , 2016, Applied and Environmental Microbiology.

[19]  J. R. Ketudat Cairns,et al.  β-Glucosidases: Multitasking, moonlighting or simply misunderstood? , 2015, Plant science : an international journal of experimental plant biology.

[20]  Dan Close,et al.  The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications , 2014, Front. Chem..

[21]  M. Bendall,et al.  Phylogenomically Guided Identification of Industrially Relevant GH1 β-Glucosidases through DNA Synthesis and Nanostructure-Initiator Mass Spectrometry , 2014, ACS chemical biology.

[22]  G. Mohr,et al.  The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons , 2014, Biotechnology for Biofuels.

[23]  Michael E. Himmel,et al.  Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq , 2014, Front. Microbiol..

[24]  Krisna Septiningrum,et al.  Direct glucose production from lignocellulose using Clostridium thermocellum cultures supplemented with a thermostable β-glucosidase , 2013, Biotechnology for Biofuels.

[25]  Antony Bacic,et al.  Determining the polysaccharide composition of plant cell walls , 2012, Nature Protocols.

[26]  Michael Anbar,et al.  Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome , 2012, Proceedings of the National Academy of Sciences.

[27]  Jie Zhang,et al.  Targeted gene engineering in Clostridium cellulolyticum H10 without methylation. , 2012, Journal of microbiological methods.

[28]  Yingang Feng,et al.  Resonance assignments of cohesin and dockerin domains from Clostridium acetobutylicum ATCC824 , 2012, Biomolecular NMR Assignments.

[29]  G. Phillips,et al.  Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate. , 2011, Acta crystallographica. Section F, Structural biology and crystallization communications.

[30]  Jonathan R Mielenz,et al.  Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation , 2011, BMC Microbiology.

[31]  E. Bayer,et al.  Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors , 2010, Proceedings of the National Academy of Sciences.

[32]  John Ralph,et al.  Lignin Biosynthesis and Structure1 , 2010, Plant Physiology.

[33]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[34]  M. Himmel,et al.  Microbial enzyme systems for biomass conversion: emerging paradigms , 2010 .

[35]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[36]  A. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[37]  T. Scheper,et al.  Cellodextrin and Laminaribiose ABC Transporters in Clostridium thermocellum , 2008, Journal of bacteriology.

[38]  Markus Pauly,et al.  Cell-wall carbohydrates and their modification as a resource for biofuels. , 2008, The Plant journal : for cell and molecular biology.

[39]  A. Demain,et al.  Induction of the celC operon of Clostridium thermocellum by laminaribiose , 2007, Proceedings of the National Academy of Sciences.

[40]  Richard Sparling,et al.  Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates , 2006 .

[41]  Wladek Minor,et al.  HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. , 2006, Acta crystallographica. Section D, Biological crystallography.

[42]  David M. Stevenson,et al.  Expression of 17 Genes in Clostridium thermocellum ATCC 27405 during Fermentation of Cellulose or Cellobiose in Continuous Culture , 2005, Applied and Environmental Microbiology.

[43]  Lee R. Lynd,et al.  Regulation of Cellulase Synthesis in Batch and Continuous Cultures of Clostridium thermocellum , 2005, Journal of bacteriology.

[44]  M. Kitaoka,et al.  Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1-->3)-beta-glucosidase from the white-rot fungus Phanerochaete chrysosporium. , 2004, Carbohydrate research.

[45]  E. Bayer,et al.  The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. , 2004, Annual review of microbiology.

[46]  L. Lynd,et al.  Kinetics and Relative Importance of Phosphorolytic and Hydrolytic Cleavage of Cellodextrins and Cellobiose in Cell Extracts of Clostridium thermocellum , 2004, Applied and Environmental Microbiology.

[47]  Mike Jarvis,et al.  Chemistry: Cellulose stacks up , 2003, Nature.

[48]  V. Zverlov,et al.  Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-beta-1,3-glucanase bound to the outer cell surface. , 2003, Microbiology.

[49]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[50]  M. Bhat,et al.  Cellobiose: A true inducer of cellulosome in different strains of Clostridium thermocellum , 1993 .

[51]  A. Demain,et al.  Chemically Defined Minimal Medium for Growth of the Anaerobic Cellulolytic Thermophile Clostridium thermocellum , 1981, Applied and environmental microbiology.

[52]  D. Olson,et al.  Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose. , 2020, Advances in applied microbiology.

[53]  R. Robinson,et al.  The structural basis of oligosaccharide binding by rice BGlu1 beta-glucosidase. , 2011, Journal of structural biology.

[54]  M. Kitaoka,et al.  Cellodextrin Phosphorylase from Clostridium thermocellum YM4 Strain Expressed in Escherichia coli , 2002 .

[55]  S. Withers,et al.  Mechanisms of enzymatic glycoside hydrolysis. , 1994, Current opinion in structural biology.

[56]  Raphael Lamed,et al.  Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome , 1985 .