A Slightly Improved Sub-Cubic Algorithm for the All Pairs Shortest Paths Problem with Real Edge Lengths

We present an $O(n^{3}\sqrt{{\rm log log}n}/{\rm log} n)$ time algorithm for the All Pairs Shortest Paths (APSP) problem for directed graphs with real edge lengths This improves, by a factor of about $\sqrt{{\rm log} n}$, previous algorithms for the problem obtained by Fredman, Takaoka and Dobosiewicz.

[1]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[2]  Zvi Galil,et al.  All Pairs Shortest Distances for Graphs with Small Integer Length Edges , 1997, Inf. Comput..

[3]  J. Ian Munro,et al.  Efficient Determination of the Transitive Closure of a Directed Graph , 1971, Inf. Process. Lett..

[4]  Gideon Yuval,et al.  An Algorithm for Finding All Shortest Paths Using N^(2.81) Infinite-Precision Multiplications , 1976, Inf. Process. Lett..

[5]  Tadao Takaoka,et al.  A New Upper Bound on the Complexity of the All Pairs Shortest Path Problem , 1991, Inf. Process. Lett..

[6]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[7]  V. Strassen Gaussian elimination is not optimal , 1969 .

[8]  Torben Hagerup,et al.  Improved Shortest Paths on the Word RAM , 2000, ICALP.

[9]  Uri Zwick,et al.  Exact and Approximate Distances in Graphs - A Survey , 2001, ESA.

[10]  Mikkel Thorup,et al.  Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.

[11]  Seth Pettie,et al.  A new approach to all-pairs shortest paths on real-weighted graphs , 2004, Theor. Comput. Sci..

[12]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[13]  Zvi Galil,et al.  All Pairs Shortest Paths for Graphs with Small Integer Length Edges , 1997, J. Comput. Syst. Sci..

[14]  Donald B. Johnson,et al.  Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.

[15]  Giuseppe F. Italiano,et al.  Fully dynamic transitive closure: breaking through the O(n/sup 2/) barrier , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[16]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[17]  Noga Alon,et al.  On the Exponent of the All Pairs Shortest Path Problem , 1991, J. Comput. Syst. Sci..

[18]  Seth Pettie,et al.  Computing shortest paths with comparisons and additions , 2002, SODA '02.

[19]  Uri Zwick,et al.  Improved dynamic reachability algorithms for directed graphs , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[20]  Valerie King,et al.  Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[21]  Raimund Seidel,et al.  On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs , 1995, J. Comput. Syst. Sci..

[22]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[23]  Uri Zwick,et al.  All pairs shortest paths using bridging sets and rectangular matrix multiplication , 2000, JACM.

[24]  W. Dobosiewicz A more efficient algorithm for the min-plus multiplication , 1990 .

[25]  Uri Zwick,et al.  All pairs shortest paths in undirected graphs with integer weights , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[26]  Michael L. Fredman,et al.  New Bounds on the Complexity of the Shortest Path Problem , 1976, SIAM J. Comput..