Multiscale modeling of keratin, collagen, elastin and related human diseases: Perspectives from atomistic to coarse-grained molecular dynamics simulations.

[1]  Alberto Smith,et al.  Tropoelastin , 2018, Circulation: Cardiovascular Imaging.

[2]  T. Ng,et al.  Numerical characterization of ultraviolet ink fluid agglomeration and the surfactant effect in nanoinkjet printing , 2017 .

[3]  Baohua Ji,et al.  Carbon nanoscroll-silk crystallite hybrid structures with controllable hydration and mechanical properties. , 2017, Nanoscale.

[4]  Markus J Buehler,et al.  Multiscale Modeling of Muscular-Skeletal Systems. , 2017, Annual review of biomedical engineering.

[5]  Matthew M. Jacobsen,et al.  Effect of Terminal Modification on the Molecular Assembly and Mechanical Properties of Protein-Based Block Copolymers. , 2017, Macromolecular bioscience.

[6]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[7]  K. Dwan,et al.  Bisphosphonate therapy for osteogenesis imperfecta. , 2016, The Cochrane database of systematic reviews.

[8]  V. Santé-Lhoutellier,et al.  The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application , 2016 .

[9]  Yong-Wei Zhang,et al.  Adsorption and Conformational Evolution of Alpha-Helical BSA Segments on Graphene: A Molecular Dynamics Study , 2016 .

[10]  Markus J Buehler,et al.  Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly , 2016, Science Advances.

[11]  Sandra J Shefelbine,et al.  Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content , 2016, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[12]  M. Buehler,et al.  Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils , 2015, Journal of the mechanical behavior of biomedical materials.

[13]  Huanxiang Liu,et al.  A Natural Interruption Displays Higher Global Stability and Local Conformational Flexibility than a Similar Gly Mutation Sequence in Collagen Mimic Peptides. , 2015, Biochemistry.

[14]  I. Pivkin,et al.  A polarizable coarse-grained protein model for dissipative particle dynamics. , 2015, Physical chemistry chemical physics : PCCP.

[15]  Helgi I. Ingólfsson,et al.  Martini Coarse-Grained Force Field: Extension to RNA. , 2015, Biophysical journal.

[16]  David L. Kaplan,et al.  Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres , 2015, Nature Communications.

[17]  André A. S. T. Ribeiro,et al.  Energy propagation and network energetic coupling in proteins. , 2015, The journal of physical chemistry. B.

[18]  A. Howard,et al.  Update on the evaluation and treatment of osteogenesis imperfecta. , 2014, Pediatric clinics of North America.

[19]  D. Tieleman,et al.  Perspective on the Martini model. , 2013, Chemical Society reviews.

[20]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[21]  J. Davies,et al.  Genotype-specific small-molecule therapy for cystic fibrosis , 2013, Breathe.

[22]  D. Rubel,et al.  Alport syndrome—insights from basic and clinical research , 2013, Nature Reviews Nephrology.

[23]  J. Uitto,et al.  The complexity of elastic fibre biogenesis in the skin – a perspective to the clinical heterogeneity of cutis laxa , 2013, Experimental dermatology.

[24]  R. Neubert,et al.  Does human leukocyte elastase degrade intact skin elastin? , 2012, The FEBS journal.

[25]  C. Mirkin,et al.  Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation , 2012, Proceedings of the National Academy of Sciences.

[26]  A. Boyde,et al.  Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice☆ , 2012, Bone.

[27]  A. Redaelli,et al.  Osteogenesis imperfecta mutations lead to local tropocollagen unfolding and disruption of H-bond network , 2012 .

[28]  Shu-Wei Chang,et al.  Structural and mechanical differences between collagen homo- and heterotrimers: relevance for the molecular origin of brittle bone disease. , 2012, Biophysical journal.

[29]  B. Brodsky,et al.  Folding Delay and Structural Perturbations Caused by Type IV Collagen Natural Interruptions and Nearby Gly Missense Mutations* , 2011, The Journal of Biological Chemistry.

[30]  A. Weiss,et al.  Coacervation of tropoelastin. , 2011, Advances in colloid and interface science.

[31]  V. Adhami,et al.  Keratin gene mutations in disorders of human skin and its appendages. , 2011, Archives of biochemistry and biophysics.

[32]  R. Mecham,et al.  New insights into the pathogenesis of autosomal‐dominant cutis laxa with report of five ELN mutations , 2011, Human mutation.

[33]  A. Oberhauser,et al.  Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity , 2011, Proceedings of the National Academy of Sciences.

[34]  T. Krieg,et al.  Expanding the keratin mutation database: novel and recurrent mutations and genotype–phenotype correlations in 28 patients with epidermolytic ichthyosis , 2011, The British journal of dermatology.

[35]  Alberto Redaelli,et al.  Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. , 2011, Nano letters.

[36]  Baohua Ji,et al.  Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations. , 2010, Journal of molecular graphics & modelling.

[37]  R. Knutsen,et al.  Mechanisms of emphysema in autosomal dominant cutis laxa. , 2010, Matrix biology : journal of the International Society for Matrix Biology.

[38]  S. N. Joshi,et al.  Alport's syndrome. , 2010, Kathmandu University medical journal.

[39]  Steven G Wise,et al.  Stages in tropoelastin coalescence during synthetic elastin hydrogel formation. , 2010, Micron.

[40]  Alberto Redaelli,et al.  Coarse-Grained Model of Collagen Molecules Using an Extended MARTINI Force Field , 2010 .

[41]  Fred W. Keeley,et al.  Structural disorder and dynamics of elastin. , 2010, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[42]  I. Bahar,et al.  Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. , 2010, Chemical reviews.

[43]  Teng Yong Ng,et al.  DISSIPATIVE PARTICLE DYNAMICS IN SOFT MATTER AND POLYMERIC APPLICATIONS — A REVIEW , 2010 .

[44]  Markus J Buehler,et al.  Alport syndrome mutations in type IV tropocollagen alter molecular structure and nanomechanical properties. , 2009, Journal of structural biology.

[45]  M. Zangeneh,et al.  DISSIPATIVE PARTICLE DYNAMICS: INTRODUCTION, METHODOLOGY AND COMPLEX FLUID APPLICATIONS - A REVIEW , 2009 .

[46]  Siewert J Marrink,et al.  Martini Coarse-Grained Force Field: Extension to Carbohydrates. , 2009, Journal of chemical theory and computation.

[47]  Alex H de Vries,et al.  A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. , 2009, The journal of physical chemistry. B.

[48]  Bert L de Groot,et al.  Secondary structure propensities in peptide folding simulations: a systematic comparison of molecular mechanics interaction schemes. , 2009, Biophysical journal.

[49]  A. Weiss,et al.  Cell Adhesion to Tropoelastin Is Mediated via the C-terminal GRKRK Motif and Integrin αVβ3* , 2009, The Journal of Biological Chemistry.

[50]  A. Redaelli,et al.  Osteogenesis Imperfecta: Molecular and Mesoscale Disease Mechanisms , 2009 .

[51]  Baohua Ji,et al.  Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors. , 2009, The Journal of chemical physics.

[52]  D. Homberger,et al.  Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia , 2009, Journal of anatomy.

[53]  Alberto Redaelli,et al.  Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. , 2009, Journal of the mechanical behavior of biomedical materials.

[54]  J. Brandner,et al.  The skin: an indispensable barrier , 2008, Experimental dermatology.

[55]  D. Suárez,et al.  Entropic control of the relative stability of triple-helical collagen peptide models. , 2008, The journal of physical chemistry. B.

[56]  B. Hudson,et al.  Mammalian collagen IV , 2008, Microscopy research and technique.

[57]  K. Kar,et al.  Triple-helical peptides: an approach to collagen conformation, stability, and self-association. , 2008, Biopolymers.

[58]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[59]  A. Rauch,et al.  Highly variable cutis laxa resulting from a dominant splicing mutation of the elastin gene , 2008, American Journal of Medical Genetics. Part A.

[60]  E. Lane,et al.  The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases , 2008, Human mutation.

[61]  R. Mecham,et al.  New insights into elastic fiber assembly. , 2007, Birth defects research. Part C, Embryo today : reviews.

[62]  Elliot P. Douglas,et al.  Bone structure and formation: A new perspective , 2007 .

[63]  Hideki Sugitani,et al.  Functional Rescue of Elastin Insufficiency in Mice by the Human Elastin Gene: Implications for Mouse Models of Human Disease , 2007, Circulation research.

[64]  Y. Suga,et al.  R156C mutation of keratin 10 causes mild form of epidermolytic hyperkeratosis , 2007, The Journal of dermatology.

[65]  J. Hoyt,et al.  Crystal-melt interface stresses: atomistic simulation calculations for a Lennard-Jones binary alloy, Stillinger-Weber Si, and embedded atom method Ni. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Clair Baldock,et al.  Collagens at a glance , 2007, Journal of Cell Science.

[67]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[68]  Anthony S Weiss,et al.  Flexibility in the solution structure of human tropoelastin. , 2007, Biochemistry.

[69]  Markus J. Buehler,et al.  Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly , 2006 .

[70]  E. Birgitte Lane,et al.  New consensus nomenclature for mammalian keratins , 2006, The Journal of cell biology.

[71]  J. Baum,et al.  Conformational Features of a Natural Break in the Type IV Collagen Gly-X-Y Repeat* , 2006, Journal of Biological Chemistry.

[72]  T. Irving,et al.  Microfibrillar structure of type I collagen in situ. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Fred W. Keeley,et al.  Tropoelastin Interacts with Cell-surface Glycosaminoglycans via Its COOH-terminal Domain* , 2005, Journal of Biological Chemistry.

[74]  A. Weiss,et al.  Cellular interactions with elastin. , 2005, Pathologie-biologie.

[75]  D. Parry,et al.  The three-dimensional structure of trichocyte (hard alpha-) keratin intermediate filaments: features of the molecular packing deduced from the sites of induced crosslinks. , 2005, Journal of structural biology.

[76]  Rainer Schmidt,et al.  The cornified envelope: a model of cell death in the skin , 2005, Nature Reviews Molecular Cell Biology.

[77]  Steven G Wise,et al.  Specificity in the coacervation of tropoelastin: solvent exposed lysines. , 2005, Journal of structural biology.

[78]  E. Lane,et al.  Keratins and skin disorders , 2004, The Journal of pathology.

[79]  Franz-Josef Wortmann,et al.  Structural stability of wild type and mutated alpha-keratin fragments: molecular dynamics and free energy calculations. , 2004, Biomacromolecules.

[80]  J. Doucet,et al.  The intermediate filament architecture as determined by X-ray diffraction modeling of hard alpha-keratin. , 2004, Biophysical journal.

[81]  D. Parry,et al.  Modeling effects of mutations in coiled‐coil structures: Case study using epidermolysis bullosa simplex mutations in segment 1a of k5/k14 intermediate filaments , 2004, Proteins.

[82]  Yi Zhang,et al.  Multi-species sequence comparison reveals dynamic evolution of the elastin gene that has involved purifying selection and lineage-specific insertions/deletions , 2004, BMC Genomics.

[83]  K. Arndt,et al.  Coiled Coil Domains: Stability, Specificity, and Biological Implications , 2004, Chembiochem : a European journal of chemical biology.

[84]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[85]  Brigida Bochicchio,et al.  Dissection of human tropoelastin: exon-by-exon chemical synthesis and related conformational studies. , 2003, Biochemistry.

[86]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[87]  K. Madison,et al.  Barrier function of the skin: "la raison d'être" of the epidermis. , 2003, The Journal of investigative dermatology.

[88]  K. Tryggvason,et al.  Alport's syndrome, Goodpasture's syndrome, and type IV collagen. , 2003, The New England journal of medicine.

[89]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[90]  Linglei Ma,et al.  Keratin 1 and keratin 10 mutations causing epidermolytic hyperkeratosis in Chinese patients. , 2002, Journal of dermatological science.

[91]  S. Sinnott,et al.  Study of C3H5+ ion deposition on polystyrene and polyethylene surfaces using molecular dynamics simulations , 2002 .

[92]  C. Poole,et al.  Classical Mechanics, 3rd ed. , 2002 .

[93]  D. Wirtz,et al.  A 'hot-spot' mutation alters the mechanical properties of keratin filament networks , 2001, Nature Cell Biology.

[94]  H. Smeets,et al.  X-linked Alport syndrome: natural history in 195 families and genotype- phenotype correlations in males. , 2000, Journal of the American Society of Nephrology : JASN.

[95]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[96]  L. Debelle,et al.  The structures of elastins and their function. , 1999, Biochimie.

[97]  X. Daura,et al.  Peptide Folding: When Simulation Meets Experiment , 1999 .

[98]  A. Weiss,et al.  Biochemistry of tropoelastin. , 1998, European journal of biochemistry.

[99]  C. Pace,et al.  A helix propensity scale based on experimental studies of peptides and proteins. , 1998, Biophysical journal.

[100]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[101]  Kazunori Takahashi,et al.  Influence of Cross-Link Structure on Impact Strength of ABS. , 1997 .

[102]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[103]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[104]  K. Tryggvason,et al.  Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. , 1993, The Journal of biological chemistry.

[105]  D. Parry,et al.  Keratin intermediate filament structure. Crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly. , 1993, Journal of molecular biology.

[106]  D. Eyre,et al.  Collagen crosslinks and mineral crystallinity in bone of patients with osteogenesis imperfecta , 1993, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[107]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[108]  J. Cassella,et al.  Abnormal collagen and mineral formation in osteogenesis imperfecta. , 1992, Bone and mineral.

[109]  Klaus Klaushofer,et al.  Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering , 1991, Calcified Tissue International.

[110]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[111]  J. Rosenbloom,et al.  Characterization of the complete human elastin gene. Delineation of unusual features in the 5'-flanking region. , 1989, The Journal of biological chemistry.

[112]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[113]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[114]  A. Steven,et al.  The molecular biology of intermediate filaments , 1985, Cell.

[115]  Jean-Pierre Hansen,et al.  Phase Transitions of the Lennard-Jones System , 1969 .

[116]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[117]  J. Petruska,et al.  A SUBUNIT MODEL FOR THE TROPOCOLLAGEN MACROMOLECULE. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[118]  F. Crick,et al.  Is α-Keratin a Coiled Coil? , 1952, Nature.

[119]  Markus J Buehler,et al.  Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response. , 2015, Topics in current chemistry.

[120]  L. Dijkhuizen,et al.  Martini Coarse-Grained Force Field: Extension to DNA. , 2015, Journal of chemical theory and computation.

[121]  J. Smiatek Dissipative Particle Dynamics: An Introduction , 2012 .

[122]  M. Weiss,et al.  Exploring membrane and protein dynamics with dissipative particle dynamics. , 2011, Advances in protein chemistry and structural biology.

[123]  A. Weiss,et al.  Engineered tropoelastin and elastin-based biomaterials. , 2009, Advances in protein chemistry and structural biology.

[124]  E. Kerem Mutation specific therapy in CF. , 2006, Paediatric respiratory reviews.

[125]  D. Parry,et al.  Fibrous proteins: new structural and functional aspects revealed. , 2005, Advances in protein chemistry.

[126]  K. Kivirikko,et al.  Collagens, modifying enzymes and their mutations in humans, flies and worms. , 2004, Trends in genetics : TIG.

[127]  F. Smith The Molecular Genetics of Keratin Disorders , 2003, American journal of clinical dermatology.

[128]  Michael J Sherratt,et al.  Elastic fibres. , 2002, Journal of cell science.

[129]  S. Smirnov,et al.  Analysis of basement membrane self-assembly and cellular interactions with native and recombinant glycoproteins. , 2002, Methods in Cell Biology.

[130]  E. Fuchs,et al.  The cytoskeleton and disease: genetic disorders of intermediate filaments. , 1996, Annual review of genetics.

[131]  A. Weiss,et al.  Total synthesis and expression in Escherichia coli of a gene encoding human tropoelastin. , 1995, Gene.

[132]  Beat Steinmann,et al.  Connective tissue and its heritable disorders —Molecular, genetic and medical aspects , 1993 .

[133]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[134]  D. Jackson Collagens , 1978 .