Nuclei-selected atomic-orbital response-theory formulation for the calculation of NMR shielding tensors using density-fitting.

An atomic orbital density matrix based response formulation of the nuclei-selected approach of Beer, Kussmann, and Ochsenfeld [J. Chem. Phys. 134, 074102 (2011)] to calculate nuclear magnetic resonance (NMR) shielding tensors has been developed and implemented into LSDalton allowing for a simultaneous solution of the response equations, which significantly improves the performance. The response formulation to calculate nuclei-selected NMR shielding tensors can be used together with the density-fitting approximation that allows efficient calculation of Coulomb integrals. It is shown that using density-fitting does not lead to a significant loss in accuracy for both the nuclei-selected and the conventional ways to calculate NMR shielding constants and should thus be used for applications with LSDalton.

[1]  M. Bühl,et al.  Calculation of NMR and EPR parameters : theory and applications , 2004 .

[2]  B. I. Dunlap,et al.  Robust variational fitting: Gáspár's variational exchange can accurately be treated analytically , 2000 .

[3]  Christian Ochsenfeld,et al.  Efficient linear-scaling calculation of response properties: density matrix-based Laplace-transformed coupled-perturbed self-consistent field theory. , 2008, The Journal of chemical physics.

[4]  Nicholas C. Handy,et al.  The density functional calculation of nuclear shielding constants using London atomic orbitals , 1995 .

[5]  W. Kutzelnigg,et al.  Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. II. Application to some simple molecules , 1982 .

[6]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[7]  M. Schütz,et al.  Density fitted, local Hartree–Fock treatment of NMR chemical shifts using London atomic orbitals , 2010 .

[8]  H. F. Hameka On the nuclear magnetic shielding in the hydrogen molecule , 1958 .

[9]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[10]  Trygve Helgaker,et al.  Nuclear shielding constants by density functional theory with gauge including atomic orbitals , 2000 .

[11]  Trygve Helgaker,et al.  Geometrical derivatives and magnetic properties in atomic-orbital density-based Hartree-Fock theory , 2001 .

[12]  J. Gauss Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals , 1992 .

[13]  Paweł Sałek,et al.  Linear-scaling implementation of molecular electronic self-consistent field theory. , 2007, The Journal of chemical physics.

[14]  T. Helgaker,et al.  Variational and robust density fitting of four-center two-electron integrals in local metrics. , 2008, The Journal of chemical physics.

[15]  C. Ochsenfeld,et al.  A linear- and sublinear-scaling method for calculating NMR shieldings in atomic orbital-based second-order Møller-Plesset perturbation theory. , 2013, The Journal of chemical physics.

[16]  J. Autschbach The Calculation of NMR Parameters in Transition Metal Complexes , 2004 .

[17]  Luca Frediani,et al.  The Dalton quantum chemistry program system , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[18]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[19]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[20]  Jörg Kussmann,et al.  Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method. , 2011, The Journal of chemical physics.

[21]  J. Grotendorst,et al.  Modern methods and algorithms of quantum chemistry : winterschool 21. - 25. February 2000 Forschungszentrum Jülich : proceedings / org. by John von Neumann Institute for Computing , 2000 .

[22]  Christian Ochsenfeld,et al.  A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme , 1997 .

[23]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[24]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[25]  Thomas W Keal,et al.  A semiempirical generalized gradient approximation exchange-correlation functional. , 2004, The Journal of chemical physics.

[26]  Trygve Helgaker,et al.  Hartree–Fock and Kohn–Sham atomic-orbital based time-dependent response theory , 2000 .

[27]  J. Kussmann,et al.  Linear‐Scaling Methods in Quantum Chemistry , 2007 .

[28]  Horst Kessler,et al.  Two‐Dimensional NMR Spectroscopy: Background and Overview of the Experiments [New Analytical Methods (36)] , 1988 .

[29]  Poul Jørgensen,et al.  On the Efficiency of Algorithms for Solving Hartree-Fock and Kohn-Sham Response Equations. , 2011, Journal of chemical theory and computation.

[30]  Hans W. Horn,et al.  Direct computation of second-order SCF properties of large molecules on workstation computers with an application to large carbon clusters , 1992 .

[31]  Trygve Helgaker,et al.  Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants , 1999 .

[32]  P. Jørgensen,et al.  Efficient elimination of response parameters in molecular property calculations for variational and nonvariational energies. , 2008, The Journal of chemical physics.

[33]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[34]  J. Gauss,et al.  Electron-correlated approaches for the calculation of nmr chemical shifts , 2003 .

[35]  Christian Ochsenfeld,et al.  Convergence of Electronic Structure with the Size of the QM Region: Example of QM/MM NMR Shieldings. , 2012, Journal of chemical theory and computation.

[36]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[37]  Jörg Kussmann,et al.  Ab initio NMR spectra for molecular systems with a thousand and more atoms: a linear-scaling method. , 2004, Angewandte Chemie.

[38]  R. R. Ernst Nuclear Magnetic Double Resonance with an Incoherent Radio‐Frequency Field , 1966 .

[39]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[40]  Trygve Helgaker,et al.  Hartree-Fock and Kohn-Sham time-dependent response theory in a second-quantization atomic-orbital formalism suitable for linear scaling. , 2008, The Journal of chemical physics.

[41]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[42]  Christian Ochsenfeld,et al.  Linear scaling exchange gradients for Hartree–Fock and hybrid density functional theory , 2000 .

[43]  M. Schütz,et al.  NMR shielding tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge including atomic orbitals. , 2012, The Journal of chemical physics.

[44]  Dennis R. Salahub,et al.  Calculations of NMR shielding constants by uncoupled density functional theory , 1993 .

[45]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[46]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[47]  H. Ågren,et al.  Indirect nuclear spin–spin coupling constants from multiconfiguration linear response theory , 1992 .

[48]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[49]  T. Helgaker,et al.  An electronic Hamiltonian for origin independent calculations of magnetic properties , 1991 .

[50]  Dean J. Tantillo,et al.  Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. , 2012, Chemical reviews.

[51]  Paweł Sałek,et al.  Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory. , 2007, The Journal of chemical physics.

[52]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[53]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[54]  R. R. Ernst,et al.  Application of Fourier Transform Spectroscopy to Magnetic Resonance , 1966 .

[55]  Rick A. Kendall,et al.  The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development , 1997 .

[56]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[57]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[58]  P. Jørgensen,et al.  Gauge-Origin Independent Formulation and Implementation of Magneto-Optical Activity within Atomic-Orbital-Density Based Hartree-Fock and Kohn-Sham Response Theories. , 2009, Journal of chemical theory and computation.

[59]  G. Schreckenbach,et al.  Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Modern Density Functional Theory , 1995 .

[60]  Patrick Norman,et al.  Efficient Calculations of Molecular Linear Response Properties for Spectral Regions. , 2014, Journal of chemical theory and computation.

[61]  Jörg Kussmann,et al.  Linear‐scaling self‐consistent field methods for large molecules , 2013 .

[62]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[63]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[64]  Jörg Kussmann,et al.  Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory. , 2007, The Journal of chemical physics.

[65]  Edward F. Valeev,et al.  A tight distance-dependent estimator for screening three-center Coulomb integrals over Gaussian basis functions. , 2014, The Journal of chemical physics.