Lattice Codes Can Achieve Capacity on the AWGN Channel
暂无分享,去创建一个
[1] J.-M. Goethals,et al. IEEE international symposium on information theory , 1981 .
[2] Hans-Andrea Loeliger,et al. Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.
[3] C. Shannon. Probability of error for optimal codes in a Gaussian channel , 1959 .
[4] G. D. Forney. Approaching the capacity of the AWGN channel with coset codes and multilevel coset codes , 1997, Proceedings of IEEE International Symposium on Information Theory.
[5] Tamás Linder,et al. Corrected proof of de Buda's theorem , 1993, IEEE Trans. Inf. Theory.
[6] T. Linder,et al. Corrected proof of de Buda's theorem (lattice channel codes) , 1993 .
[7] H. Piaggio. An Introduction to the Geometry of N Dimensions , 1930, Nature.
[8] J. Wolfowitz. Coding Theorems of Information Theory , 1962, Ergebnisse der Mathematik und Ihrer Grenzgebiete.
[9] W. Beyer. CRC Standard Mathematical Tables and Formulae , 1991 .
[10] W. Fischer,et al. Sphere Packings, Lattices and Groups , 1990 .
[11] P. Shiu,et al. Geometric and analytic number theory , 1991 .
[12] Rudolf de Buda,et al. The upper error bound of a new near-optimal code , 1975, IEEE Trans. Inf. Theory.
[13] Rudi de Buda,et al. Some optimal codes have structure , 1989, IEEE J. Sel. Areas Commun..
[14] H. Loeliger. On the Basic Averaging Arguments for Linear Codes , 1994 .