On well-posedness for a free boundary fluid-structure model

We address a fluid-structure interaction model describing the motion of an elastic body immersed in an incompressible fluid. We establish a priori estimates for the local existence of solutions for a class of initial data which also guarantees uniqueness.

[1]  M. Boulakia Existence of Weak Solutions for the Three-Dimensional Motion of an Elastic Structure in an Incompressible Fluid , 2007 .

[2]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[3]  I. Kukavica,et al.  Solutions to a free boundary problem of fluid-structure interaction , 2012 .

[4]  Daniel Coutand,et al.  Motion of an Elastic Solid inside an Incompressible Viscous Fluid , 2005 .

[5]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[6]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[7]  Irena Lasiecka,et al.  Optimal boundary control with critical penalization for a PDE model of fluid–solid interactions , 2009 .

[8]  M. Boulakia,et al.  A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations , 2009 .

[9]  G. Simonett,et al.  ON THE TWO-PHASE NAVIER-STOKES EQUATIONS WITH SURFACE TENSION , 2009, 0908.3327.

[10]  Daniel Coutand,et al.  The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations , 2006 .

[11]  Igor Kukavica,et al.  SOLUTIONS TO A FLUID-STRUCTURE INTERACTION FREE BOUNDARY PROBLEM , 2011 .

[12]  Igor Kukavica,et al.  Strong solutions to a Navier–Stokes–Lamé system on a domain with a non-flat boundary , 2010 .

[13]  Igor Kukavica,et al.  Well-posedness for the compressible Navier–Stokes–Lamé system with a free interface , 2012 .

[14]  Gerd Grubb,et al.  Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods. , 1991 .

[15]  Igor Kukavica,et al.  Strong solutions for a fluid structure interaction system , 2010, Advances in Differential Equations.

[16]  Amjad Tuffaha,et al.  Smoothness of weak solutions to a nonlinear fluid-structure interaction model , 2008 .

[17]  Roland Glowinski,et al.  Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..

[18]  Irena Lasiecka,et al.  Sharp Regularity Theory for Elastic and Thermoelastic Kirchoff Equations with Free Boundary Conditions , 2000 .

[19]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[20]  Irena Lasiecka,et al.  Higher Regularity of a Coupled Parabolic-Hyperbolic Fluid-Structure Interactive System , 2008 .

[21]  Semigroup Generation and ``hidden" Trace Regularity of a Dynamic Plate with Non-Monotone Boundary Feedbacks , 2010 .

[22]  Irena Lasiecka,et al.  Riccati theory and singular estimates for a Bolza control problem arising in linearized fluid-structure interaction , 2009, Syst. Control. Lett..

[23]  J. Marsden,et al.  Classical elastodynamics as a linear symmetric hyperbolic system , 1978 .

[24]  R. Triggiani,et al.  Uniform stabilization of the wave equation with dirichlet-feedback control without geometrical conditions , 1992 .

[25]  L. Hou,et al.  ANALYSIS OF A LINEAR FLUID-STRUCTURE INTERACTION PROBLEM , 2003 .

[26]  M. Boulakia,et al.  Regular solutions of a problem coupling a compressible fluid and an elastic structure , 2010 .

[27]  Igor Kukavica,et al.  Strong solutions to a nonlinear fluid structure interaction system , 2009 .

[28]  Roland Glowinski,et al.  A kinematically coupled time-splitting scheme for fluid-structure interaction in blood flow , 2009, Appl. Math. Lett..