Fast and Accurate Algorithms for Re-Weighted $\ell _{1}$-Norm Minimization
暂无分享,去创建一个
[1] Miguel R. D. Rodrigues,et al. Penalized L1 minimization for reconstruction of time-varying sparse signals , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[2] Jean-Jacques Fuchs,et al. On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.
[3] Stephen J. Wright,et al. Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.
[4] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[5] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[6] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[7] Christopher J. Rozell,et al. A Hierarchical Re-weighted-l1 Approach for Dynamic Sparse Signal Estimation , 2011 .
[8] Emmanuel J. Candès,et al. NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..
[9] Mário A. T. Figueiredo,et al. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.
[10] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[11] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[12] E. Candès,et al. Near-ideal model selection by ℓ1 minimization , 2008, 0801.0345.
[13] Hassan Mansour,et al. Beyond ℓ1-norm minimization for sparse signal recovery , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).
[14] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[15] Yaakov Tsaig,et al. Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.
[16] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[17] Michael P. Friedlander,et al. Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..
[18] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[19] Bhaskar D. Rao,et al. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..
[20] M. R. Osborne,et al. A new approach to variable selection in least squares problems , 2000 .
[21] Weiyu Xu,et al. Improved sparse recovery thresholds with two-step reweighted ℓ1 minimization , 2010, 2010 IEEE International Symposium on Information Theory.
[22] P. Laguna,et al. Signal Processing , 2002, Yearbook of Medical Informatics.
[23] Emmanuel J. Candès,et al. Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..
[24] N. Meinshausen,et al. LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.
[25] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[26] Junfeng Yang,et al. Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..
[27] C. Bachoc,et al. Applied and Computational Harmonic Analysis Tight P-fusion Frames , 2022 .
[28] Yin Zhang,et al. Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..
[29] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[30] S. Mallat. A wavelet tour of signal processing , 1998 .
[31] Stephen P. Boyd,et al. Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.
[32] Michael Elad,et al. Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.
[33] José M. Bioucas-Dias,et al. Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.
[34] José M. Bioucas-Dias,et al. A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.
[35] I. Daubechies,et al. Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.
[36] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[37] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[38] P. Holland,et al. Robust regression using iteratively reweighted least-squares , 1977 .
[39] M. Salman Asif,et al. Dynamic Updating for � � Minimization , 2010 .
[40] M. Salman Asif,et al. Dynamic Updating for ` 1 Minimization , 2009 .
[41] E.J. Candes. Compressive Sampling , 2022 .
[42] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[43] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[44] Stéphane Mallat,et al. A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .
[45] Gareth M. James,et al. Improved variable selection with Forward-Lasso adaptive shrinkage , 2011, 1104.3390.
[46] Hassan Mansour,et al. Recovering Compressively Sampled Signals Using Partial Support Information , 2010, IEEE Transactions on Information Theory.
[47] Wotao Yin,et al. Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.