Recent Results from Studies of Electric Discharges in the Mesosphere

The paper reviews recent advances in studies of electric discharges in the stratosphere and mesosphere above thunderstorms, and their effects on the atmosphere. The primary focus is on the sprite discharge occurring in the mesosphere, which is the most commonly observed high altitude discharge by imaging cameras from the ground, but effects on the upper atmosphere by electromagnetic radiation from lightning are also considered. During the past few years, co-ordinated observations over Southern Europe have been made of a wide range of parameters related to sprites and their causative thunderstorms. Observations have been complemented by the modelling of processes ranging from the electric discharge to perturbations of trace gas concentrations in the upper atmosphere. Observations point to significant energy deposition by sprites in the neutral atmosphere as observed by infrasound waves detected at up to 1000 km distance, whereas elves and lightning have been shown significantly to affect ionization and heating of the lower ionosphere/mesosphere. Studies of the thunderstorm systems powering high altitude discharges show the important role of intracloud (IC) lightning in sprite generation as seen by the first simultaneous observations of IC activity, sprite activity and broadband, electromagnetic radiation in the VLF range. Simulations of sprite ignition suggest that, under certain conditions, energetic electrons in the runaway regime are generated in streamer discharges. Such electrons may be the source of X- and Gamma-rays observed in lightning, thunderstorms and the so-called Terrestrial Gamma-ray Flashes (TGFs) observed from space over thunderstorm regions. Model estimates of sprite perturbations to the global atmospheric electric circuit, trace gas concentrations and atmospheric dynamics suggest significant local perturbations, and possibly significant meso-scale effects, but negligible global effects.

[1]  Charles K. Birdsall,et al.  Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC , 1991 .

[2]  T. Neubert,et al.  Cosmic influences on the atmosphere , 2002 .

[3]  T. H. Allin,et al.  The Planetary rate of sprite events , 2006 .

[4]  U. Inan,et al.  Very low frequency sferic bursts, sprites, and their association with lightning activity , 2007 .

[5]  C. Drüe,et al.  Comparison of a SAFIR lightning detection network in northern Germany to the operational BLIDS network , 2007 .

[6]  Gurevich,et al.  Kinetic theory of runaway air breakdown. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Kenneth L. Cummins,et al.  A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network , 1998 .

[8]  T. Bell,et al.  Spatial structure of sprites , 1998 .

[9]  Yukihiro Takahashi,et al.  Elves : Lightning-induced transient luminous events in the lower ionosphere , 1996 .

[10]  D. Sentman,et al.  Sprites and possible mesospheric effects , 2000 .

[11]  Vladimir A. Rakov,et al.  Measurements of x‐ray emission from rocket‐triggered lightning , 2004 .

[12]  Matthew J. Heavner,et al.  Preliminary results from the Sprites94 Aircraft Campaign: 2. Blue jets , 1995 .

[13]  T. Farges,et al.  Automated chirp detection with diffusion entropy: Application to infrasound from sprites , 2005 .

[14]  S. Cummer,et al.  Rare measurements of a sprite with halo event driven by a negative lightning discharge over Argentina , 2008 .

[15]  Umran S. Inan,et al.  Observations of the relationship between sprite morphology and in-cloud lightning processes , 2006 .

[16]  R. Hsu,et al.  Early VLF perturbations observed in association with elves , 2006 .

[17]  R. West Halley’s Comet (Part I): Ground-based Observations , 1989 .

[18]  Umran S. Inan,et al.  Interaction with the lower ionosphere of electromagnetic pulses from lightning: Heating, attachment, and ionization , 1993 .

[19]  Y. Takahashi,et al.  Energy estimation of electrons producing sprite halos using array photometer data , 2003 .

[20]  P. Crutzen,et al.  Response of mesopheric ozone to particle precipitation , 1980 .

[21]  Martin A. Uman,et al.  X‐ray bursts produced by laboratory sparks in air , 2005 .

[22]  Umran S. Inan,et al.  γ‐Ray emission produced by a relativistic beam of runaway electrons accelerated by quasi‐electrostatic thundercloud fields , 1996 .

[23]  W. D. Rust,et al.  X‐ray pulses observed above a mesoscale convective system , 1996 .

[24]  V. Rakov,et al.  Lightning: Physics and Effects , 2007 .

[25]  Lou‐Chuang Lee,et al.  D region ionization by lightning-induced electromagnetic pulses , 2005 .

[26]  Matthew J. Heavner,et al.  Electron energy and electric field estimates in sprites derived from ionized and neutral N2 emissions , 2002 .

[27]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[28]  T. H. Allin,et al.  Sprites over Europe , 2001 .

[29]  P. Verronen Ionosphere-atmosphere interaction during solar proton events , 2006 .

[30]  Yoav Yair,et al.  New observations of sprites from the space shuttle , 2004 .

[31]  M. Ignaccolo,et al.  Stratospheric Joule heating by lightning continuing current inferred from radio remote sensing , 2006 .

[32]  Gjj Hans Winands Efficient streamer plasma generation , 2007 .

[33]  U. Inan,et al.  Telescopic imaging of sprites , 2000 .

[34]  D. D. Sentman,et al.  Dynamical relationship of infrared cloudtop temperatures with occurrence rates of cloud‐to‐ground lightning and sprites , 2003 .

[35]  Martin Bødker Enghoff,et al.  Experimental evidence for the role of ions in particle nucleation under atmospheric conditions , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Vladislav Mazur,et al.  Initial comparison of lightning mapping with operational time‐of‐arrival and interferometric systems , 1997 .

[37]  K. Beard,et al.  Effects of Image Charges on the Scavenging of Aerosol Particles by Cloud Droplets and on Droplet Charging and Possible Ice Nucleation Processes , 2000 .

[38]  David M. Suszcynsky,et al.  Photometric measurements in the SPRITES ’95 & ’96 campaigns of nitrogen second positive (399.8 nm) and first negative (427.8 nm) emissions , 1998 .

[39]  U. Inan,et al.  Space‐time structure of optical flashes and ionization changes produced by lighting‐EMP , 1996 .

[40]  Umran S. Inan,et al.  Heating, ionization and upward discharges in the mesosphere, due to intense quasi‐electrostatic thundercloud fields , 1995 .

[41]  M. Sato,et al.  Global sprite occurrence locations and rates derived from triangulation of transient Schumann resonance events , 2003 .

[42]  S. Cummer Current moment in sprite-producing lightning , 2003 .

[43]  D. Revelle,et al.  Meteor Trails and Columniform Sprites , 2000 .

[44]  Richard J. Blakeslee,et al.  The role of the space shuttle videotapes in the discovery of sprites, jets and elves , 1998 .

[45]  Mark A. Stanley,et al.  High speed video of initial sprite development , 1999 .

[46]  Y. C. Wang,et al.  Gigantic jets between a thundercloud and the ionosphere , 2003, Nature.

[47]  Marco Ridolfi,et al.  Seeking sprite‐induced signatures in remotely sensed middle atmosphere NO2 , 2008 .

[48]  N. Balakrishnan,et al.  Nitric oxide production in collisions of hot O(3P) atoms with N2: NITRIC OXIDE PRODUCTION , 2003 .

[49]  T. E. Nelson,et al.  New high-resolution ground-based studies of sprites , 1996 .

[50]  S. Cecchini,et al.  Gamma‐ray bursts of atmospheric origin in the MeV energy range , 2000 .

[51]  Ningyu Liu,et al.  Effects of photoionization on propagation and branching of positive and negative streamers in sprites , 2004 .

[52]  M. Rycroft,et al.  New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites , 2007 .

[53]  Umran S. Inan,et al.  Co-ordinated observations of transient luminous events during the EuroSprite2003 campaign , 2005 .

[54]  V. Pasko THE ORETICAL MODELING OF SPRITES AND JETS , 2006 .

[55]  P. Richards,et al.  Thermospheric nitric oxide from the ATLAS 1 , 1995 .

[56]  Yukihiro Takahashi,et al.  Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite , 2003 .

[57]  Juan Alejandro Valdivia,et al.  Model of red sprites due to intracloud fractal lightning discharges , 1998 .

[58]  Umran S. Inan,et al.  DEMETER satellite observations of lightning‐induced electron precipitation , 2007 .

[59]  B. Mauk,et al.  X-ray enhancements detected during thunderstorm and lightning activities , 1981 .

[60]  U. Inan,et al.  Subionospheric VLF signatures and their association with sprites observed during EuroSprite-2003 , 2005 .

[61]  William Rison,et al.  Energetic radiation associated with lightning stepped‐leaders , 2001 .

[62]  E. Blanc,et al.  Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: a summary , 1985 .

[63]  C. Rodger Red sprites, upward lightning, and VLF perturbations , 1999 .

[64]  Thomas Farges,et al.  Nadir observations of sprites from the International Space Station , 2004 .

[65]  K. Zybin,et al.  High energy cosmic ray particles and the most powerful discharges in thunderstorm atmosphere , 2004 .

[66]  B. Tinsley,et al.  Electroscavenging in clouds with broad droplet size distributions and weak electrification , 2001 .

[67]  R. Nemzek,et al.  Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System , 1990, Science.

[68]  S. Reising,et al.  Excitation of Earth‐ionosphere cavity resonances by sprite‐associated lightning flashes , 1998 .

[69]  Y. Takahashi,et al.  VLF/ELF sferic evidence for in‐cloud discharge activity producing sprites , 2005 .

[70]  Umran S. Inan,et al.  Sprites produced by quasi‐electrostatic heating and ionization in the lower ionosphere , 1997 .

[71]  Matthew J. Heavner,et al.  OBSERVATIONS OF 'COLUMNIFORM' SPRITES , 1998 .

[72]  T. Neubert,et al.  Is there a unique signature in the ULF response to sprite-associated lightning flashes? , 2006 .

[73]  R. Gendrin,et al.  WORLDWIDE SIMULTANEITY OF OCCURRENCE OF A Q-TYPE ELF BURST IN THE SCHUMANN RESONANCE FREQUENCY RANGE. , 1967 .

[74]  Aleksandr V. Gurevich,et al.  Lightning initiation by simultaneous effect of runaway breakdown and cosmic ray showers , 1999 .

[75]  Elisabeth Blanc,et al.  Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde. , 2002, The Journal of the Acoustical Society of America.

[76]  Ulrich Schumann,et al.  The global lightning-induced nitrogen oxides source , 2007 .

[77]  Matthew J. Heavner,et al.  OPTICAL SPECTROSCOPIC OBSERVATIONS OF SPRITES, BLUE JETS, AND ELVES: INFERRED MICROPHYSICAL PROCESSES AND THEIR MACROPHYSICAL IMPLICATIONS , 2000 .

[78]  Harold A. B. Gardiner,et al.  MSX satellite observations of thunderstorm‐generated gravity waves in mid‐wave infrared images of the upper stratosphere , 1998 .

[79]  F. J. Gordillo-Vazquez,et al.  Air plasma kinetics under the influence of sprites , 2008 .

[80]  Eugene M. Wescott,et al.  Imaging of elves, halos and sprite initiation at time resolution , 2003 .

[81]  T. E. Nelson,et al.  Submillisecond imaging of sprite development and structure , 2006 .

[82]  R. Houze Mesoscale convective systems , 2004 .

[83]  Y. Taranenko Interaction with the Lower Ionosphere of Electromagnetic Pulses from Lightning: Heating, Attachment, Ionization, and Optical Emissions , 1993 .

[84]  U. Inan,et al.  Production of terrestrial gamma‐ray flashes by an electromagnetic pulse from a lightning return stroke , 2005 .

[85]  Á. Mika Very low frequency EM wave studies of transient luminous events in the lower ionosphere , 2007 .

[86]  Joan Montanyà,et al.  Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns:Two case studies. , 2009 .

[87]  C. Kouveliotou,et al.  Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin , 1994, Science.

[88]  Facing Non-Stationary Conditions with a New Indicator of Entropy Increase: The Cassandra Algorithm , 2001, cond-mat/0111246.

[89]  T. Bell,et al.  A two‐dimensional model of runaway electron beams driven by quasi‐electrostatic thundercloud fields , 1997 .

[90]  M. Sato,et al.  Ground‐based observations of ULF transients excited by strong lightning discharges producing elves and sprites , 1997 .

[91]  B. Vonnegut,et al.  Observations of lightning in the stratosphere , 1995 .

[92]  S. Pancheshnyi Role of electronegative gas admixtures in streamer start, propagation and branching phenomena , 2005 .

[93]  M. Rycroft Enhanced energetic electron intensities at 100 km altitude and a whistler propagating through the plasmasphere. , 1973 .

[94]  Vladimir A. Rakov,et al.  A ground level gamma‐ray burst observed in association with rocket‐triggered lightning , 2004 .

[95]  T. Bell,et al.  Sprites as Luminous Columns of Ionization Produced by Quasi-Electrostatic Thundercloud Fields , 1996 .

[96]  J. Curry,et al.  Encyclopedia of atmospheric sciences , 2002 .

[97]  Aleksandr V. Gurevich,et al.  On runaway breakdown and upward propagating discharges , 1996 .

[98]  M. Rycroft,et al.  Non-uniform ionisation of the upper atmosphere due to the electromagnetic pulse from a horizontal lightning discharge , 2001 .

[99]  Robert H. Holzworth,et al.  Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth , 2006 .

[100]  T. Neubert On Sprites and Their Exotic Kin , 2003, Science.

[101]  Y. Takahashi,et al.  Simultaneous radio and satellite optical measurements of high-altitude sprite current and lightning continuing current , 2006 .

[102]  Cora E. Randall,et al.  Arctic and Antarctic polar winter NOx and energetic particle precipitation in 2002–2006 , 2007 .

[103]  Alex Guenther,et al.  Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan , 2003 .

[104]  M. Taylor,et al.  Video and Photometric Observations of a Sprite in Coincidence with a Meteor-triggered Jet Event , 1999 .

[105]  H. Rowland Theories and simulations of elves, sprites and blue jets , 1998 .

[106]  U. Inan,et al.  “Early/slow” events: A new category of VLF perturbations observed in relation with sprites , 2006 .

[107]  J. Austin,et al.  A three-dimensional modeling study of the influence of planetary wave dynamics on polar ozone photochemistry , 1992 .

[108]  G. Brizzi,et al.  Precision improvements in the geo-fit retrieval of pressure and temperature from MIPAS limb observations by modeling CO2 line-mixing , 2007 .

[109]  F. Vitt,et al.  A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth's middle atmosphere as calculated using a two‐dimensional model , 1996 .

[110]  Matthew G. McHarg,et al.  Observed emission rates in sprite streamer heads , 2007 .

[111]  Lawrence D. Carey,et al.  Lightning location relative to storm structure in a leading‐line, trailing‐stratiform mesoscale convective system , 2005 .

[112]  Umran S. Inan,et al.  Subionospheric early VLF signal perturbations observed in one‐to‐one association with sprites , 2004 .

[113]  H. Christian Global Frequency and Distribution of Lightning as Observed From Space , 2001 .

[114]  E. Blanc,et al.  HF echoes from ionization potentially produced by high-altitude discharges , 1997 .

[115]  R. Roussel-Dupre,et al.  High altitude discharges and gamma‐ray flashes: A manifestation of runaway air breakdown , 1996 .

[116]  E. Dewan,et al.  Simultaneous Observations of Mesospheric Gravity Waves and Sprites Generated by a Midwestern Thunderstorm , 2003 .

[117]  U. Inan,et al.  Lightning-induced electron precipitation , 1984, Nature.

[118]  T. Bösinger,et al.  An alternative explanation for the ultra-slow tail of sprite-associated lightning discharges , 2006 .

[119]  Matthew G. McHarg,et al.  Observations of streamer formation in sprites , 2007 .

[120]  Y. Hobara,et al.  Sprite-attributed infrasonic chirps—their detection, occurrence and properties between 1994 and 2004 , 2005 .

[121]  P. Mascart,et al.  A numerical study of tropical cross-tropopause transport by convective overshoots , 2007 .

[122]  F. Leblanc,et al.  Planetary Atmospheric Electricity , 2008 .

[123]  Willem Hundsdorfer,et al.  An adaptive grid refinement strategy for the simulation of negative streamers , 2006, J. Comput. Phys..

[124]  B. Christiansen,et al.  On the response of a three-dimensional general circulation model to imposed changes in the ozone distribution , 1997 .

[125]  George E. Georghiou,et al.  Numerical analysis of the stability of the electrohydrodynamic (EHD) electroconvection between two plates , 2008 .

[126]  Olivier Chanrion,et al.  A PIC-MCC code for simulation of streamer propagation in air , 2008, J. Comput. Phys..

[127]  S. Constable,et al.  Global triangulation of intense lightning discharges , 2000 .

[128]  Bernard Vonnegut,et al.  Recent observations of lightning discharges from the top of a thundercloud into the clear air above , 1989 .

[129]  W. Hundsdorfer,et al.  The multiscale nature of streamers , 2006, physics/0604023.

[130]  R. P. Lin,et al.  Terrestrial Gamma-Ray Flashes Observed up to 20 MeV , 2005, Science.

[131]  Umran S. Inan,et al.  VLF signatures of ionospheric disturbances associated with sprites , 1995 .

[132]  G. M. Milikh,et al.  Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm , 1992 .

[133]  T. Farges,et al.  Experimental evidence of D region heating by lightning‐induced electromagnetic pulses on MF radio links , 2007 .

[134]  T. H. Allin,et al.  Identification of infrasound produced by sprites during the Sprite2003 campaign , 2005 .

[135]  T. E. Nelson,et al.  Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems , 2003 .

[136]  T. Bösinger,et al.  On distant excitation of the ionospheric Alfvén resonator by positive cloud-to-ground lightning discharges , 2008 .

[137]  A. Stohl,et al.  Lightning-produced NO x over Brazil during TROCCINOX: airborne measurements in tropical and subtropical thunderstorms and the importance of mesoscale convective systems , 2007 .

[138]  M. Füllekrug Elementary model of sprite igniting electric fields , 2006 .

[139]  M. Déqué,et al.  The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling , 1994 .

[140]  Y. Takahashi,et al.  Beta‐type stepped leader of elve‐producing lightning , 2005 .

[141]  Umran S. Inan,et al.  ELF radiation produced by electrical currents in sprites , 1998 .

[142]  P. Berg,et al.  The dynamical response of the middle atmosphere to the tropospheric solar signal , 2007 .

[143]  U. Inan,et al.  Electrical discharge from a thundercloud top to the lower ionosphere , 2002, Nature.

[144]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[145]  E. Williams,et al.  Sprites, ELF Transients, and Positive Ground Strokes , 1995, Science.

[146]  H. Volland Global Electric Circuit , 1984 .

[147]  L. Gray The influence of the equatorial upper stratosphere on stratospheric sudden warmings , 2003 .

[148]  N. Scafetta,et al.  Compression and diffusion: a joint approach to detect complexity , 2002, cond-mat/0202123.

[149]  Herbert M. Pickett,et al.  Production of odd hydrogen in the mesosphere during the January 2005 solar proton event , 2006 .

[150]  Willem Hundsdorfer,et al.  Spontaneous branching of anode-directed streamers between planar electrodes. , 2001, Physical review letters.

[151]  E. Kyrölä,et al.  Diurnal variation of ozone depletion during the October-November 2003 solar proton events , 2005 .

[152]  Matthew G. McHarg,et al.  Plasma chemistry of sprite streamers , 2007 .

[153]  S. Bailey,et al.  Comparison of a thermospheric photochemical model with Student Nitric Oxide Explorer (SNOE) observations of nitric oxide , 2004 .

[154]  Umran S. Inan,et al.  Measurement of charge transfer in sprite‐producing lightning using ELF radio atmospherics , 1997 .

[155]  M. P. McCarthy,et al.  Further observations of X-rays inside thunderstorms , 1985 .

[156]  Walter A. Lyons,et al.  Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems , 1996 .

[157]  C. Rodger,et al.  Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry , 2007 .

[158]  W. Lyons,et al.  Detection and location of red sprites by VLF scattering of subionospheric transmissions , 1996 .

[159]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[160]  S. Cummer,et al.  Detection of daytime sprites via a unique sprite ELF signature , 2000 .

[161]  R. Hsu,et al.  Electric field transition between the diffuse and streamer regions of sprites estimated from ISUAL/array photometer measurements , 2006 .

[162]  T. Bell,et al.  Evidence for continuing current in sprite‐producing cloud‐to‐ground lightning , 1996 .

[163]  R. Mccormick,et al.  Testing the importance of precipitation loss mechanisms in the inner radiation belt , 2004 .

[164]  M. Rycroft,et al.  "Sprites, Elves and Intense Lightning Discharges" , 2006 .

[165]  Mengu Cho,et al.  Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere , 1998 .

[166]  W. Lyons Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video , 1994 .

[167]  C. Rodger,et al.  Significance of transient luminous events to neutral chemistry: Experimental measurements , 2008 .

[168]  T. Clarmann,et al.  MIPAS: an instrument for atmospheric and climate research , 2007 .

[169]  D. Hampton,et al.  Preliminary results from the Sprites94 aircraft campaign: 1 , 1995 .

[170]  W. D. Rust,et al.  Electric field values observed near lightning flash initiations , 2007 .

[171]  N. Østgaard,et al.  Production altitude and time delays of the terrestrial gamma flashes: Revisiting the Burst and Transient Source Experiment spectra , 2008 .

[172]  T. Shimazaki Minor Constituents in the Middle Atmosphere , 1986 .

[173]  Georgios Veronis,et al.  Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders , 2006 .

[174]  D. Baker,et al.  Thermospheric nitric oxide at higher latitudes: Model calculations with auroral energy input , 2007 .

[175]  B. Christiansen Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: Model and reanalysis , 2001 .

[176]  Vladislav Mazur,et al.  “Spider” lightning in intracloud and positive cloud-to-ground flashes , 1998 .

[177]  Y. Takahashi,et al.  Parameterisation of the chemical effect of sprites in the middle atmosphere , 2008 .