Detection of squeezed light with glass-integrated technology embedded into a homodyne detector setup

We design and demonstrate a homodyne detection scheme based on a glass-integrated optical device (GID) operating in the quantum regime, that is, able to detect genuine nonclassical features. Our device is entirely fabricated by femtosecond laser micromachining. The GID incorporates on the same chip a balanced waveguide beamsplitter and a thermo-optic phase shifter, allowing us to record homodyne traces at different phases and to perform reliable quantum state tomography. In particular, we show that the GID allows for the detection of nonclassical features of continuous-variable quantum states, such as squeezed states.

[1]  Matteo G. A. Paris,et al.  Homodyne detection as a near-optimum receiver for phase-shift-keyed binary communication in the presence of phase diffusion , 2013, 1305.4201.

[2]  Damien Bonneau,et al.  An On-Chip Homodyne Detector for Measuring Quantum States , 2016, 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[3]  A. Politi,et al.  Continuous-variable entanglement on a chip , 2015, Nature Photonics.

[4]  Karsten Danzmann,et al.  Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. , 2016, Physical review letters.

[5]  Dario Tamascelli,et al.  Quantum state transfer via Bloch oscillations , 2015, Scientific Reports.

[6]  Fabio Sciarrino,et al.  Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining , 2015, Light: Science & Applications.

[7]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[8]  Fabio Sciarrino,et al.  All-optical non-Markovian stroboscopic quantum simulator , 2014, 1411.6959.

[9]  B. L. Schumaker,et al.  Noise in homodyne detection. , 1984, Optics letters.

[10]  Michal Lipson,et al.  On-Chip Optical Squeezing , 2013, 1309.6371.

[11]  Simon Gross,et al.  Laser written circuits for quantum photonics , 2015 .

[12]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[13]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[14]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[15]  Lee,et al.  Measure of the nonclassicality of nonclassical states. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[16]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[17]  C. Macchiavello,et al.  Detection of the density matrix through optical homodyne tomography without filtered back projection. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.

[18]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[19]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[20]  Timothy C. Ralph,et al.  A Guide to Experiments in Quantum Optics , 1998 .

[21]  Stephen Ho,et al.  Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. , 2008, Optics express.

[22]  S. Schiller,et al.  Measurement of the quantum states of squeezed light , 1997, Nature.

[23]  V. Chan,et al.  Noise in homodyne and heterodyne detection. , 1983, Optics letters.

[24]  A. Lvovsky,et al.  Electronic noise in optical homodyne tomography , 2006, quant-ph/0610116.

[25]  V. Chan,et al.  Local-oscillator excess-noise suppression for homodyne and heterodyne detection. , 1983, Optics letters.

[26]  Nemanja Jovanovic,et al.  Low bend loss waveguides enable compact, efficient 3D photonic chips. , 2013, Optics express.

[27]  Brian J. Smith,et al.  Phase-controlled integrated photonic quantum circuits. , 2009, Optics express.

[28]  S. Olivares,et al.  Full quantum state reconstruction of symmetric two-mode squeezed thermal states via spectral homodyne detection and a state-balancing detector , 2015, 1505.03903.

[29]  S. Olivares,et al.  Pulsed homodyne Gaussian quantum tomography with low detection efficiency , 2013, 1301.2471.

[30]  Tobias Gehring,et al.  Ab initio quantum-enhanced optical phase estimation using real-time feedback control , 2015, Nature Photonics.

[31]  Homodyne-like detection for coherent state-discrimination in the presence of phase noise. , 2016, Optics express.

[32]  Maria Bondani,et al.  Phase-reference monitoring in coherent-state discrimination assisted by a photon-number resolving detector , 2016, Scientific Reports.

[33]  H. Toba,et al.  Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers , 1988 .

[34]  S. Olivares,et al.  Hybrid quantum key distribution using coherent states and photon-number-resolving detectors , 2017, Physical Review A.

[35]  Matteo G. A. Paris,et al.  Assessing the significance of fidelity as a figure of merit in quantum state reconstruction of discrete and continuous-variable systems , 2016, 1604.00313.

[36]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[37]  G. D’Ariano,et al.  Quantum Tomography , 2003, quant-ph/0302028.

[38]  Giuseppe Vallone,et al.  Polarization entangled state measurement on a chip , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[39]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[40]  F. Kaiser,et al.  A fully guided-wave squeezing experiment for fiber quantum networks , 2016 .