A modified Fuzzy k-Partition based on indiscernibility relation for categorical data clustering
暂无分享,去创建一个
Iwan Tri Riyadi Yanto | Tutut Herawan | Maizatul Akmar Ismail | T. Herawan | I. R. Yanto | M. Ismail
[1] Mustafa Mat Deris,et al. Applying variable precision rough set model for clustering student suffering study's anxiety , 2012, Expert Syst. Appl..
[2] Jon M. Kleinberg,et al. Clustering categorical data: an approach based on dynamical systems , 2000, The VLDB Journal.
[3] Michael K. Ng,et al. On the Impact of Dissimilarity Measure in k-Modes Clustering Algorithm , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[4] M. M. Deris,et al. ROSMAN: ROugh Set approach for clustering Supplier base MANagement( SOFT COMPUTING METHODOLOGIES AND ITS APPLICATIONS) , 2011 .
[5] Zhibo Chen,et al. Multi-Agent Reinforcement Learning Based on Bidding , 2009, 2009 First International Conference on Information Science and Engineering.
[6] Tian,et al. An Optimal Spectral Clustering Approach Based on Cauchy-Schwarz Divergence , 2009 .
[7] Michael K. Ng,et al. A fuzzy k-modes algorithm for clustering categorical data , 1999, IEEE Trans. Fuzzy Syst..
[8] A. Scott,et al. Clustering methods based on likelihood ratio criteria. , 1971 .
[9] Henry L. Harris,et al. Helping Students Cope with Test Anxiety. ERIC Digest. , 2003 .
[10] B B B X R X X,et al. MMR : AN ALGORITHM FOR CLUSTERING CATEGORICAL DATA USING ROUGH SET THEORY , 2007 .
[11] Jacek M. Leski,et al. Fuzzy c-ordered-means clustering , 2016, Fuzzy Sets Syst..
[12] James M. Keller,et al. Improvements to the relational fuzzy c-means clustering algorithm , 2014, Pattern Recognit..
[13] Sotirios Chatzis,et al. A fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional , 2011, Expert Syst. Appl..
[14] Janusz Zalewski,et al. Rough sets: Theoretical aspects of reasoning about data , 1996 .
[15] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[16] S. Miyamoto,et al. FORMULATIONS OF FUZZY CLUSTERING FOR CATEGORICAL DATA , 2005 .
[17] Peter Bryant,et al. Asymptotic behaviour of classification maximum likelihood estimates , 1978 .
[18] Lei Jiang,et al. A Clustering Algorithm FCM-ACO for Supplier Base Management , 2010, ADMA.
[19] Donald W. Bouldin,et al. A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[20] Francisco de A. T. de Carvalho,et al. Fuzzy c-means clustering methods for symbolic interval data , 2007, Pattern Recognit. Lett..
[21] Michael J. Symons,et al. Clustering criteria and multivariate normal mixtures , 1981 .
[22] Ohn Mar San,et al. An alternative extension of the k-means algorithm for clustering categorical data , 2004 .
[23] Zdzislaw Pawlak. Rough classification , 1999, Int. J. Hum. Comput. Stud..
[24] Joshua Zhexue Huang,et al. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values , 1998, Data Mining and Knowledge Discovery.
[25] Miin-Shen Yang. A survey of fuzzy clustering , 1993 .
[26] Miin-Shen Yang,et al. A fuzzy k-partitions model for categorical data and its comparison to the GoM model , 2008, Fuzzy Sets Syst..
[27] Miin-Shen Yang,et al. Alternative c-means clustering algorithms , 2002, Pattern Recognit..
[28] Andrzej Skowron,et al. Rudiments of rough sets , 2007, Inf. Sci..
[29] Doheon Lee,et al. Fuzzy clustering of categorical data using fuzzy centroids , 2004, Pattern Recognit. Lett..
[30] David Kronemyer,et al. Stress and anxiety: counterpart elements of the stress/anxiety complex. , 2014, The Psychiatric clinics of North America.
[31] Wlodzislaw Duch,et al. Understanding neurodynamical systems via Fuzzy Symbolic Dynamics , 2010, Neural Networks.
[32] Zengyou He,et al. Improving K-Modes Algorithm Considering Frequencies of Attribute Values in Mode , 2005, CIS.
[33] Rollin McCraty,et al. Enhancing Emotional, Social, and Academic Learning With Heart Rhythm Coherence Feedback , 2005 .
[34] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[35] L. Hubert,et al. Comparing partitions , 1985 .
[36] J. Dunn. Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .
[37] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.