Simple phosphinate ligands access zinc clusters identified in the synthesis of zinc oxide nanoparticles

[1]  J. Lewiński,et al.  Structural Diversity of Ethylzinc Carboxylates , 2015 .

[2]  K. Kurzydłowski,et al.  tert-Butyl(tert-butoxy)zinc hydroxides: hybrid models for single-source precursors of ZnO nanocrystals. , 2015, Chemistry.

[3]  Iris M. Oppel,et al.  The σ-aromatic clusters [Zn₃]⁺ and [Zn₂Cu]: embryonic brass. , 2015, Angewandte Chemie.

[4]  Charlotte K. Williams,et al.  Dual‐Mechanism Antimicrobial Polymer–ZnO Nanoparticle and Crystal Violet‐Encapsulated Silicone , 2015 .

[5]  P. Cui,et al.  A multicentre-bonded [ZnI]8 cluster with cubic aromaticity , 2015, Nature Communications.

[6]  J. Love,et al.  Macrocyclic Platforms for the Construction of Tetranuclear Oxo and Hydroxo Zinc Clusters , 2015 .

[7]  Carolyn N. Valdez,et al.  Low capping group surface density on zinc oxide nanocrystals. , 2014, ACS nano.

[8]  K. Sokołowski,et al.  Zinc Hydroxides and Oxides Supported by Organic Ligands: Synthesis and Structural Diversity , 2014 .

[9]  G. Somorjai,et al.  Colloidal Metal Nanocatalysts: Synthesis, Characterization, and Catalytic Applications , 2014, Journal of Cluster Science.

[10]  T. Hyeon,et al.  Synthesis, Characterization, and Application of Ultrasmall Nanoparticles , 2014 .

[11]  K. Hellgardt,et al.  Phosphinate stabilised ZnO and Cu colloidal nanocatalysts for CO2 hydrogenation to methanol. , 2013, Chemical communications.

[12]  Alina M. Schimpf,et al.  Controlling carrier densities in photochemically reduced colloidal ZnO nanocrystals: size dependence and role of the hole quencher. , 2013, Journal of the American Chemical Society.

[13]  Mark D. Smith,et al.  Zinc(II) and cadmium(II) monohydroxide bridged, dinuclear metallacycles: a unique case of concerted double Berry pseudorotation. , 2013, Inorganic chemistry.

[14]  Markus Niederberger,et al.  Zinc oxide nanoparticles: chemical mechanisms and classical and non-classical crystallization. , 2013, Dalton transactions.

[15]  Rajesh Kumar,et al.  Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review , 2013 .

[16]  Carolyn N. Valdez,et al.  Effect of protons on the redox chemistry of colloidal zinc oxide nanocrystals. , 2013, Journal of the American Chemical Society.

[17]  V. Schmidt,et al.  Morphology and Efficiency: The Case of Polymer/ZnO Solar Cells , 2013 .

[18]  J. Lewiński,et al.  Oxozinc carboxylates: a predesigned platform for modelling prototypical Zn-MOFs' reactivity toward water and donor solvents. , 2012, Chemical communications.

[19]  Charlotte K. Williams,et al.  Organometallic Route to Surface-Modified ZnO Nanoparticles Suitable for In Situ Nanocomposite Synthesis: Bound Carboxylate Stoichiometry Controls Particle Size or Surface Coverage , 2012 .

[20]  James M. Mayer,et al.  Titanium and Zinc Oxide Nanoparticles Are Proton-Coupled Electron Transfer Agents , 2012, Science.

[21]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[22]  M. Muhler,et al.  Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis. , 2012, Physical chemistry chemical physics : PCCP.

[23]  D. Gamelin,et al.  Tuning the potentials of "extra" electrons in colloidal n-type ZnO nanocrystals via Mg2+ substitution. , 2012, Journal of the American Chemical Society.

[24]  M. Kahn,et al.  Full characterization of colloidal solutions of long-alkyl-chain-amine-stabilized ZnO nanoparticles by NMR spectroscopy: surface state, equilibria, and affinity. , 2012, Chemistry.

[25]  C. Turrin,et al.  Ligand effects on the air stability of coppernanoparticles obtained from organometallic synthesis , 2012 .

[26]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[27]  F. Stellacci,et al.  Mixed-ligand nanoparticles as supramolecular receptors. , 2011, Small.

[28]  T. Płociński,et al.  tert-Butylzinc hydroxide as an efficient predesigned precursor of ZnO nanoparticles. , 2011, Chemical communications.

[29]  T. Dingemans,et al.  Methyl modified MOF-5: a water stable hydrogen storage material. , 2011, Chemical communications.

[30]  E. Rabani,et al.  Heavily Doped Semiconductor Nanocrystal Quantum Dots , 2011, Science.

[31]  M. Driess,et al.  Unprecedented alkylzinc-magnesium alkoxide clusters as suitable organometallic precursors for magnesium-containing ZnO nanoparticles. , 2011, Chemistry.

[32]  Andrew J. P. White,et al.  Solvent Dependence of the Structure of Ethylzinc Acetate and Its Application in CO2/Epoxide Copolymerization , 2011 .

[33]  S. Schulz,et al.  X-ray crystal structure of a heterobimetallic Al-Zn-oxide complex. , 2011, Chemical communications.

[34]  Yunfei Zhou,et al.  Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers , 2010 .

[35]  Zhengxiao Guo,et al.  Enhancement of H2 uptake via fluorination but not lithiation for Zn4N8 and Zn4N6O type clusters. , 2010, Chemical communications.

[36]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[37]  Moazzam Ali,et al.  ZnO Nanocrystals: Surprisingly ‘Alive’ , 2010 .

[38]  Andrew J. P. White,et al.  Pentanuclear Complexes for a Series of Alkylzinc Carboxylates , 2009 .

[39]  M. Kahn,et al.  Self-assembly of ZnO nanocrystals in colloidal solutions. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  M. R. Wagner,et al.  A Systematic Study on Zinc Oxide Materials Containing Group I Metals (Li, Na, K)-Synthesis from Organometallic Precursors, Characterization, and Properties , 2009 .

[41]  S. Polarz,et al.  Nucleation and growth of ZnO in organic solvents--an in situ study. , 2008, Journal of the American Chemical Society.

[42]  W. Buhro,et al.  The trouble with TOPO; identification of adventitious impurities beneficial to the growth of cadmium selenide quantum dots, rods, and wires. , 2008, Nano letters.

[43]  A. Jackson,et al.  The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles , 2008, Proceedings of the National Academy of Sciences.

[44]  R. Lamb,et al.  High-Quality ZnxMg1−xO Thin Films Deposited from a Single Molecular Source. Intimate Mixing as a Means to Improved Film Properties , 2008 .

[45]  M. Maurin,et al.  Alkylzinc carboxylates as efficient precursors for zinc oxocarboxylates and sulfidocarboxylates. , 2008, Angewandte Chemie.

[46]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[47]  Joseph Margolis,et al.  THE TROUBLE WITH TERROR , 2007 .

[48]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[49]  C. Santilli,et al.  Dynamical Study of ZnO Nanocrystal and Zn-HDS Layered Basic Zinc Acetate Formation from Sol−Gel Route , 2007 .

[50]  M. Allendorf,et al.  The interaction of water with MOF-5 simulated by molecular dynamics. , 2006, Journal of the American Chemical Society.

[51]  L. Spanhel Colloidal ZnO nanostructures and functional coatings: A survey , 2006 .

[52]  Mm Martijn Wienk,et al.  Hybrid Solar Cells Using a Zinc Oxide Precursor and a Conjugated Polymer , 2005 .

[53]  Myrtil L. Kahn,et al.  Size‐ and Shape‐Control of Crystalline Zinc Oxide Nanoparticles: A New Organometallic Synthetic Method , 2005 .

[54]  P. Cozzoli,et al.  Colloidal synthesis of organic-capped ZnO nanocrystals via a sequential reduction-oxidation reaction. , 2005, The journal of physical chemistry. B.

[55]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[56]  P. Mulvaney,et al.  Nucleation and growth kinetics of CdSe nanocrystals in octadecene , 2004 .

[57]  C. Rao,et al.  Transformations of molecules and secondary building units to materials: a bottom-up approach. , 2004, Accounts of chemical research.

[58]  Laura E. Matzen,et al.  Precursor Structural Influences on the Final ZnO Nanoparticle Morphology from a Novel Family of Structurally Characterized Zinc Alkoxy Alkyl Precursors , 2004 .

[59]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .

[60]  D. A. Schwartz,et al.  Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals. , 2003, Journal of the American Chemical Society.

[61]  Taek‐Mo Chung,et al.  Monodispersed ZnO nanoparticles from a single molecular precursor. , 2003, Chemical communications.

[62]  Anthony L. Spek,et al.  Journal of , 1993 .

[63]  R. Duchateau Incompletely condensed silsesquioxanes: versatile tools in developing silica-supported olefin polymerization catalysts. , 2002, Chemical reviews.

[64]  Hannah Storrie,et al.  Factors Influencing the Thermodynamics of Zinc Alkoxide Formation by Alcoholysis of the Terminal Hydroxide Complex, [TpBut,Me]ZnOH: An Experimental and Theoretical Study Relevant to the Mechanism of Action of Liver Alcohol Dehydrogenase , 2000 .

[65]  S. Lippard,et al.  Reactivity of mu-hydroxodizinc(II) centers in enzymatic catalysis through model studies. , 2000, Inorganic chemistry.

[66]  M. Beckett,et al.  π-Bonding in B–O ring species: Lewis acidity of Me3B3O3, synthesis of amine Me3B3O3 adducts, and the crystal and molecular structure of Me3B3O3.NH2iBu·MeB(OH)2 , 1999 .

[67]  Yu Yang,et al.  [Zn2 (thf)2 (EtZn)6 Zn4 (μ4 -O)(tBuPO3 )8 ]: A Dodecanuclear Zincophosphonate Aggregate with a Zn4 (μ4 -O) Core. , 1999, Angewandte Chemie.

[68]  Eric A. Meulenkamp,et al.  Synthesis and Growth of ZnO Nanoparticles , 1998 .

[69]  A. Rheingold,et al.  Zinc di(tert-butyl)phosphate complexes as precursors to zinc phosphates. Manipulation of zincophosphate structures , 1997 .

[70]  H. Baxter Williams,et al.  A Survey , 1992 .

[71]  P. Power,et al.  Synthesis and characterization of novel quasiaromatic zinc-sulfur aggregates and related zinc-oxygen complexes , 1991 .

[72]  M. Elcombe,et al.  u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction , 1989 .

[73]  A. M. Glazer,et al.  A nitrogen‐gas‐stream cryostat for general X‐ray diffraction studies , 1986 .

[74]  Zhen Ma,et al.  Rh 2 O 3 /mesoporous MO x ‐ Al 2 O 3 (M = Mn, Fe, Co, Ni, Cu, Ba) catalysts: Synthesis, characterization, and catalytic applications , 2016 .

[75]  Peter Bächtold,et al.  Bottom-Up Approach , 2013 .

[76]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[77]  S. Lippard,et al.  Modeling Carboxylate-Bridged Dinuclear Active Sites in Metalloenzymes Using a Novel Naphthyridine-Based Dinucleating Ligand , 2000 .

[78]  A. Rheingold,et al.  Monomeric Alkyl and Hydride Derivatives of Zinc Supported by Poly(pyrazoly)hydroborato Ligation: Synthetic, Structural, and Reactivity Studies , 1995 .

[79]  W. D. Vorst,et al.  Interpretation of the Yellow Colour of Heat Treated ZnO Powder , 1965 .

[80]  G. Coates,et al.  341. Alkoxy-, thio-, and amino-derivatives of methylzinc , 1965 .