Strongly Consistent Determination of the Rank of Matrix.

In this paper, we develop methods of the determination of the rank of random matrix. Using the matrix perturbation theory to construct or find a suitable bases of the kernel (null space) of the matrix and to determine the limiting distribution of the estimator of the smallest singular values. We propose a new rank test for an unobserved matrix for which a root-N-consistent estimator is available and construct a Wald- type test statistic (generalized Wald test). The test, based on matrix perturbation theory, enable to determine how many singular values of the estimated matrix are insignificantly different from zero and we fully characterise the asymptotic distribution of the generalized Wald statistic under the most general conditions. We show that it is chi- square distribution under the null. In particular case, when the asymptotic covariance matrix has a Kronecker product form, the test statistic is equivalent to likelihood ratio test statistic and to Multiplier Lagrange test statistic. Two approaches to be considered are sequential testing strategy and information theoretic criterion. We establish a strongly consistent of the determination of the rank of matrix using the two approaches.

[1]  C. Radhakrishna Rao,et al.  Separation theorems for singular values of matrices and their applications in multivariate analysis , 1979 .

[2]  T. W. Anderson Correction to "Estimating Linear Restrictions on Regression Coefficients for Multivariate Normal Distributions" , 1980 .

[3]  T. W. Anderson,et al.  Tests of overidentification and predeterminedness in simultaneous equation models , 1992 .

[4]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[5]  D. Andrews Asymptotic Results for Generalized Wald Tests , 1987, Econometric Theory.

[6]  Generalized Inverses and Asymptotic Properties of Wald Tests , 1987 .

[7]  T. W. Anderson,et al.  Asymptotic robustness of tests of overidentification and predeterminedness , 1994 .

[8]  Tosio Kato A Short Introduction to Perturbation Theory for Linear Operators , 1982 .

[9]  J. Schmee An Introduction to Multivariate Statistical Analysis , 1986 .

[10]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[11]  J. Robin,et al.  TESTS OF RANK , 2000, Econometric Theory.

[12]  Testing the equality of the smallest latent roots of a correlation matrix , 1988 .

[13]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  E. Hannan,et al.  The statistical theory of linear systems , 1989 .

[16]  D. M. Penfold,et al.  Factor Analysis as a Statistical Method. , 1964 .

[17]  David S. Moore,et al.  Generalized Inverses, Wald's Method, and the Construction of Chi-Squared Tests of Fit , 1977 .

[18]  W. Perraudin,et al.  A Theorem on Portfolio Separation with General Preferences , 1995 .

[19]  R. Shibata Selection of the order of an autoregressive model by Akaike's information criterion , 1976 .

[20]  C. Gouriéroux,et al.  Tests sur le noyau, l'image et le rang de la matrice des coefficients d'un modéle linéaire multivarié , 1993 .

[21]  Glenn D. Rudebusch,et al.  Judging Instrument Relevance in Instrumental Variables Estimation , 1996 .

[22]  Tail areas of linear combinations of chi-squares and non-central chi-squares , 1993 .

[23]  D. Andrews Chi-Square Diagnostic Tests for Econometric Models: Theory , 1988 .

[24]  T. Ferguson A Course in Large Sample Theory , 1996 .

[25]  H. White,et al.  Information criteria for selecting possibly misspecified parametric models , 1996 .

[26]  H. White Asymptotic theory for econometricians , 1985 .

[27]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[28]  Z. Bai,et al.  On detection of the number of signals in presence of white noise , 1985 .

[29]  Peter C. B. Phillips,et al.  Econometric Model Determination , 1996 .

[30]  T. W. Anderson ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS , 1963 .

[31]  Zhi-Dong Bai,et al.  On rates of convergence of efficient detection criteria in signal processing with white noise , 1989, IEEE Trans. Inf. Theory.

[32]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[33]  J. Lardiès,et al.  Model Order Estimation of a Multivariable Stochastic Process , 2005 .

[34]  R. Nishii Maximum likelihood principle and model selection when the true model is unspecified , 1988 .

[35]  J. Lardiès,et al.  Comparison of Tests for Model Specification in Multivariate Time Series , 1998 .

[36]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[37]  A. E. Maxwell,et al.  Factor Analysis as a Statistical Method. , 1964 .

[38]  Arthur Lewbel,et al.  The Rank of Demand Systems: Theory and Nonparametric Estimation , 1991 .

[39]  J. Fuchs Structure and order estimation of multivariable stochastic processes , 1990 .

[40]  T. W. Anderson Estimating Linear Restrictions on Regression Coefficients for Multivariate Normal Distributions , 1951 .

[41]  A. Basilevsky,et al.  Factor Analysis as a Statistical Method. , 1964 .

[42]  Zaka Ratsimalahelo Specification of Varma Echelon form Models , 2001 .

[43]  T. W. Anderson Asymptotic Theory for Canonical Correlation Analysis , 1999 .

[44]  M. Aoki,et al.  State space modeling of multiple time series , 1991 .

[45]  Helmut Lütkepohl,et al.  Modified wald tests under nonregular conditions , 1997 .

[46]  Zaka Ratsimalahelo Rank Test Based On Matrix Perturbation Theory , 2001 .

[47]  Stephen G. Donald,et al.  Inferring the rank of a matrix , 1997 .

[48]  P. Robinson,et al.  Generalized canonical analysis for time series , 1973 .

[49]  M. L. Eaton,et al.  The asymptotic distribution of singular values with applications to canonical correlations and correspondence analysis , 1994 .

[50]  James R. Schott,et al.  Optimal bounds for the distributions of some test criteria for tests of dimensionality , 1984 .

[51]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[52]  A. Lewbel,et al.  Testing the Rank and Definiteness of Estimated Matrices with Applications to Factor, State-Space and ARMA Models , 1992 .

[53]  Stephen G. Donald,et al.  On the asymptotic properties of ldu-based tests of the rank of a matrix , 1996 .