Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons

[1]  J. Touboul Propagation of chaos in neural fields , 2011, 1108.2414.

[2]  W. Stannat,et al.  Mean field limit for disordered diffusions with singular interactions , 2013, 1301.6521.

[3]  Diego Fasoli,et al.  Three Applications of GPU Computing in Neuroscience , 2012, Computing in Science & Engineering.

[4]  Olivier D. Faugeras,et al.  Noise-Induced Behaviors in Neural Mean Field Dynamics , 2011, SIAM J. Appl. Dyn. Syst..

[5]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[6]  Eric Shea-Brown,et al.  Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Arnulf Jentzen,et al.  Convergence of the Stochastic Euler Scheme for Locally Lipschitz Coefficients , 2009, Found. Comput. Math..

[8]  Francois Bolley Jos Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010 .

[9]  M. Dawkins The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. By Edmund T. Rolls & Gustavo Deco. Oxford: Oxford University Press (2010). Pp. 310. Price £37.95 hardback. , 2010, Animal Behaviour.

[10]  Marc Benayoun,et al.  Avalanches in a Stochastic Model of Spiking Neurons , 2010, PLoS Comput. Biol..

[11]  K. Pakdaman,et al.  Fluid limit theorems for stochastic hybrid systems with application to neuron models , 2010, Advances in Applied Probability.

[12]  Olivier D. Faugeras,et al.  Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations , 2009, SIAM J. Appl. Dyn. Syst..

[13]  J. Touboul,et al.  Can Power-Law Scaling and Neuronal Avalanches Arise from Stochastic Dynamics? , 2009, PloS one.

[14]  P. Kloeden,et al.  Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Michael A. Buice,et al.  Systematic Fluctuation Expansion for Neural Network Activity Equations , 2009, Neural Computation.

[16]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[17]  Olivier P. Faugeras,et al.  Hyperbolic Planforms in Relation to Visual Edges and Textures Perception , 2009, PLoS Comput. Biol..

[18]  J. M. Herrmann,et al.  Phase transitions towards criticality in a neural system with adaptive interactions. , 2009, Physical review letters.

[19]  William E. Schiesser,et al.  A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab , 2009 .

[20]  Samuel Herrmann Julian Tugaut Non-uniqueness of stationary measures for self-stabilizing processes , 2009, 0903.2460.

[21]  Olivier D. Faugeras,et al.  A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs , 2008, Front. Comput. Neurosci..

[22]  Alain Destexhe,et al.  A Master Equation Formalism for Macroscopic Modeling of Asynchronous Irregular Activity States , 2009, Neural Computation.

[23]  Paul C. Bressloff,et al.  Stochastic Neural Field Theory and the System-Size Expansion , 2009, SIAM J. Appl. Math..

[24]  Olivier D. Faugeras,et al.  Absolute Stability and Complete Synchronization in a Class of Neural Fields Models , 2008, SIAM J. Appl. Math..

[25]  J. Touboul,et al.  A characterization of the first hitting time of double integral processes to curved boundaries , 2008, Advances in Applied Probability.

[26]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[27]  Cheng Ly,et al.  Critical Analysis of Dimension Reduction by a Moment Closure Method in a Population Density Approach to Neural Network Modeling , 2007, Neural Computation.

[28]  J. Cowan,et al.  Field-theoretic approach to fluctuation effects in neural networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Lyle J. Graham,et al.  Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[31]  Aurélien Alfonsi,et al.  On the discretization schemes for the CIR (and Bessel squared) processes , 2005, Monte Carlo Methods Appl..

[32]  S. Coombes,et al.  Bumps, breathers, and waves in a neural network with spike frequency adaptation. , 2005, Physical review letters.

[33]  John M. Beggs,et al.  Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures , 2004, The Journal of Neuroscience.

[34]  M. Shelley,et al.  An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[36]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[37]  Terrence J. Sejnowski,et al.  Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism , 1994, Journal of Computational Neuroscience.

[38]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[39]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[40]  Nicolas Brunel,et al.  Firing Rate of the Noisy Quadratic Integrate-and-Fire Neuron , 2003, Neural Computation.

[41]  M. Mattia,et al.  Population dynamics of interacting spiking neurons. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Boris S. Gutkin,et al.  Multiple Bumps in a Neuronal Model of Working Memory , 2002, SIAM J. Appl. Math..

[43]  H. Plesser Aspects of Signal Processing in Noisy Neurons , 2001 .

[44]  M. Aminoff Principles of Neural Science. 4th edition , 2001 .

[45]  Denis Talay,et al.  A STOCHASTIC PARTICLE METHOD WITH RANDOM WEIGHTS FOR THE COMPUTATION OF STATISTICAL SOLUTIONS OF MCKEAN-VLASOV EQUATIONS , 2001 .

[46]  Nicolas Brunel,et al.  Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates , 1999, Neural Computation.

[47]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[48]  A. Guionnet Averaged and quenched propagation of chaos for spin glass dynamics , 1997 .

[49]  D. Amit,et al.  Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. , 1997, Cerebral cortex.

[50]  Christoph W. Ueberhuber Numerical computation : methods, software, and analysis , 1997 .

[51]  Mireille Bossy,et al.  A stochastic particle method for the McKean-Vlasov and the Burgers equation , 1997, Math. Comput..

[52]  Carl Graham,et al.  Probabilistic Models for Nonlinear Partial Differential Equations , 1996 .

[53]  S. Méléard Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .

[54]  K. Morton,et al.  Numerical Solution of Partial Differential Equations , 1995 .

[55]  W. Gerstner,et al.  Time structure of the activity in neural network models. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  K. W. Morton,et al.  Numerical Solution of Partial Differential Equations: An Introduction , 2005 .

[57]  Ohira,et al.  Master-equation approach to stochastic neurodynamics. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  Arjona,et al.  Dynamics of coherently pumped lasers with linearly polarized pump and generated fields. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[59]  Abbott,et al.  Asynchronous states in networks of pulse-coupled oscillators. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  A. Treves Mean-field analysis of neuronal spike dynamics , 1993 .

[62]  W. Schiesser The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .

[63]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[64]  A. Sznitman Topics in propagation of chaos , 1991 .

[65]  P. Protter Stochastic integration and differential equations , 1990 .

[66]  Sommers,et al.  Chaos in random neural networks. , 1988, Physical review letters.

[67]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[68]  H. Tuckwell Introduction to Theoretical Neurobiology: Linear Cable Theory and Dendritic Structure , 1988 .

[69]  M. Scheutzow Uniqueness and non-uniqueness of solutions of Vlasov-McKean equations , 1987, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[70]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[71]  B. Øksendal Stochastic Differential Equations , 1985 .

[72]  A. Sznitman Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated , 1984 .

[73]  Hiroshi Tanaka Limit Theorems for Certain Diffusion Processes with Interaction , 1984 .

[74]  D. Dawson Critical dynamics and fluctuations for a mean-field model of cooperative behavior , 1983 .

[75]  Hiroshi Tanaka,et al.  Some probabilistic problems in the spatially homogeneous Boltzmann equation , 1983 .

[76]  H. Sompolinsky,et al.  Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses , 1982 .

[77]  Hiroshi Tanaka,et al.  Central limit theorem for a simple diffusion model of interacting particles , 1981 .

[78]  J. Cowan,et al.  Temporal oscillations in neuronal nets , 1979, Journal of mathematical biology.

[79]  Hiroshi Tanaka Probabilistic treatment of the Boltzmann equation of Maxwellian molecules , 1978 .

[80]  W. Braun,et al.  The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .

[81]  S. Amari,et al.  Characteristics of Random Nets of Analog Neuron-Like Elements , 1972, IEEE Trans. Syst. Man Cybern..

[82]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[83]  R. Dobrushin Prescribing a System of Random Variables by Conditional Distributions , 1970 .

[84]  M. Hp A class of markov processes associated with nonlinear parabolic equations. , 1966 .

[85]  H. McKean,et al.  A CLASS OF MARKOV PROCESSES ASSOCIATED WITH NONLINEAR PARABOLIC EQUATIONS , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[86]  R. FitzHugh Theoretical Effect of Temperature on Threshold in the Hodgkin-Huxley Nerve Model , 1966, The Journal of general physiology.

[87]  Paul Malliavin,et al.  Stochastic Analysis , 1997, Nature.

[88]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[89]  R. FitzHugh Mathematical models of threshold phenomena in the nerve membrane , 1955 .

[90]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[91]  H. Schwan,et al.  Biological Engineering , 1970 .

[92]  A. Hammerstein Nichtlineare Integralgleichungen nebst Anwendungen , 1930 .

[93]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[94]  S. A.,et al.  A Propagation of Chaos Result for Burgers ' Equation , 2022 .