Adaptive NURBS Tessellation on GPU

This chapter presents a method for adaptively tessellating NURBS surfaces on GPU. The method involves tessellation interval estimation, conversion from NURBS to rational Bezier patches, and gap-free tessellation of rational Bezier patches. All the computations are performed on GPU. The main contributions of the chapter lie in two aspects: (1) we improve Zheng and Sederberg’s tessellation interval estimation for rational curves and surfaces to give larger tessellation interval and thus to produce fewer triangles, and (2) we propose an adaptive tessellation strategy that allows to tessellate each rational Bezier patch on GPU independently and meanwhile avoid gaps between rational Bezier patches. By using GPU, complicated NURBS models can be easily rendered in real time.

[1]  Jörg Peters,et al.  Efficient pixel-accurate rendering of curved surfaces , 2012, I3D '12.

[2]  Les A. Piegl,et al.  Tessellating trimmed surfaces , 1995, Comput. Aided Des..

[3]  Salim S. Abi-Ezzi,et al.  Tessellation of Curved Surfaces under Highly Varying Transformations , 1991, Eurographics.

[4]  Salim S. Abi-Ezzi,et al.  Fast Dynamic Tessellation of Trimmed NURBS Surfaced 1 , 1994, Comput. Graph. Forum.

[5]  Thomas W. Sederberg,et al.  Partial derivatives of rational Bézier surfaces , 1997, Comput. Aided Geom. Des..

[6]  Marc Stamminger,et al.  Fast GPU‐based Adaptive Tessellation with CUDA , 2009, Comput. Graph. Forum.

[7]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[8]  Gerald E. Farin,et al.  Tighter convex hulls for rational Bézier curves , 1993, Comput. Aided Geom. Des..

[9]  Yao Zhang,et al.  Scan primitives for GPU computing , 2007, GH '07.

[10]  Bernd E. Hirsch,et al.  Triangulation of trimmed surfaces in parametric space , 1992, Comput. Aided Des..

[11]  Fuhua Cheng Estimating subdivision depths for rational curves and surfaces , 1992, TOGS.

[12]  Reinhard Klein,et al.  GPU-based trimming and tessellation of NURBS and T-Spline surfaces , 2005, SIGGRAPH 2005.

[13]  Robert P. Markot,et al.  Surface algorithms using bounds on derivatives , 1986, Comput. Aided Geom. Des..

[14]  Gershon Elber Error bounded piecewise linear approximation of freeform surfaces , 1996, Comput. Aided Des..

[15]  Thomas W. Sederberg,et al.  Estimating tessellation parameter intervals for rational curves and surfaces , 2000, TOGS.

[16]  Henry P. Moreton,et al.  Watertight tessellation using forward differencing , 2001, HWWS '01.

[17]  Michael S. Floater,et al.  Derivatives of rational Bézier curves , 1992, Comput. Aided Geom. Des..

[18]  Reinhard Klein,et al.  Fat borders: gap filling for efficient view-dependent LOD NURBS rendering , 2004, Comput. Graph..

[19]  Robert J. Cripps,et al.  Improved surface bounds based on derivatives , 1997, Comput. Aided Geom. Des..