Corticotropin-releasing factor (CRF)-induced behaviors are modulated by intravenous administration of teneurin C-terminal associated peptide-1 (TCAP-1)

[1]  D. Belsham,et al.  Teneurin carboxy (C)-terminal associated peptide-1 inhibits alkalosis-associated necrotic neuronal death by stimulating superoxide dismutase and catalase activity in immortalized mouse hypothalamic cells , 2007, Brain Research.

[2]  D. Belsham,et al.  Regulation of neurite growth in immortalized mouse hypothalamic neurons and rat hippocampal primary cultures by teneurin C-terminal-associated peptide-1 , 2007, Neuroscience.

[3]  F. Vaccarino,et al.  P-5: TCAP-1 administration in rats modulates the anxiogenic effects of CRF in three tests of anxiety , 2006, Neuropeptides.

[4]  D. Lovejoy,et al.  Teneurin C-terminal associated peptides: an enigmatic family of neuropeptides with structural similarity to the corticotropin-releasing factor and calcitonin families of peptides. , 2006, General and comparative endocrinology.

[5]  J. Wingfield,et al.  Rapid inhibition of female sexual behavior by gonadotropin-inhibitory hormone (GnIH) , 2006, Hormones and Behavior.

[6]  R. Tucker,et al.  Teneurins: a conserved family of transmembrane proteins involved in intercellular signaling during development. , 2006, Developmental biology.

[7]  A. P. Carobrez,et al.  Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on , 2005, Neuroscience & Biobehavioral Reviews.

[8]  J. Schulkin,et al.  A neuroendocrine mechanism for sustaining fear , 2005, Trends in Neurosciences.

[9]  Y. Ueta,et al.  Adrenomedullin protects rat cerebral endothelial cells from oxidant damage in vitro , 2005, Regulatory Peptides.

[10]  J. Haller,et al.  Behavioral specificity of non-genomic glucocorticoid effects in rats: Effects on risk assessment in the elevated plus-maze and the open-field , 2005, Hormones and Behavior.

[11]  C. Elias,et al.  Teneurin proteins possess a carboxy terminal sequence with neuromodulatory activity. , 2005, Brain research. Molecular brain research.

[12]  S. Brain,et al.  Vascular actions of calcitonin gene-related peptide and adrenomedullin. , 2004, Physiological reviews.

[13]  D. Barsyte-Lovejoy,et al.  Cloning and characterization of teneurin C-terminus associated peptide (TCAP)-3 from the hypothalamus of an adult rainbow trout (Oncorhynchus mykiss). , 2004, General and comparative endocrinology.

[14]  W. Banks,et al.  Passage of vasoactive intestinal peptide across the blood–brain barrier , 2003, Peptides.

[15]  R. Egleton,et al.  Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability , 2001, Peptides.

[16]  M. Takayasu,et al.  Adrenomedullin Reduces Ischemic Brain Injury after Transient Middle Cerebral Artery Occlusion in Rats , 2001, Acta Neurochirurgica.

[17]  P. Sawchenko,et al.  Do Centrally Administered Neuropeptides Access Cognate Receptors?: An Analysis in the Central Corticotropin-Releasing Factor System , 2000, The Journal of Neuroscience.

[18]  A. Holmes,et al.  Corticosterone response to the plus-maze High correlation with risk assessment in rats and mice , 1999, Physiology & Behavior.

[19]  R. Rodgers,et al.  Anxiety, defence and the elevated plus-maze , 1997, Neuroscience & Biobehavioral Reviews.

[20]  W. Banks,et al.  Selective transport of blood-borne interleukin-1α into the posterior division of the septum of the mouse brain , 1995, Brain Research.

[21]  S. Baumgartner,et al.  Tenm, a Drosophila gene related to tenascin, is a new pair‐rule gene. , 1994, The EMBO journal.

[22]  R. Wides,et al.  odd Oz: A novel Drosophila pair rule gene , 1994, Cell.

[23]  W. Banks,et al.  Permeability of the blood-brain barrier to peptides: An approach to the development of therapeutically useful analogs , 1992, Peptides.

[24]  H. Davson,et al.  Kinetics of arginine-vasopressin uptake at the blood-brain barrier. , 1990, Biochimica et biophysica acta.

[25]  L. Rakić,et al.  Slow Penetration of Thyrotropin‐Releasing Hormone Across the Blood‐Brain Barrier of an In Situ Perfused Guinea Pig Brain , 1988, Journal of neurochemistry.

[26]  G. Meisenberg,et al.  Peptides and the blood-brain barrier , 1983 .

[27]  R. Keep,et al.  Oligopeptide Transport at the Blood—Brain and Blood-CSF Barriers , 2006 .

[28]  W. Pan,et al.  Permeability of the Blood—Brain Barrier to Neurotrophic Peptides , 2006 .

[29]  K. Audus,et al.  Functional Aspects of Vasoactive Peptides at the Blood–Brain Barrier , 2006 .

[30]  D. Begley Hypothalamic Neuropeptides and the Blood—Brain Barrier , 2006 .

[31]  W. Pan,et al.  Peptide transport across the blood-brain barrier. , 2003, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[32]  C. Johanson Ontogeny and Phylogeny of the Blood-Brain Barrier , 1989 .

[33]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[34]  B. Posner,et al.  Circumventricular organs: receptors and mediators of direct peptide hormone action on brain. , 1983, Advances in metabolic disorders.