Empirical prediction models for adaptive resource provisioning in the cloud

Cloud computing allows dynamic resource scaling for enterprise online transaction systems, one of the key characteristics that differentiates the cloud from the traditional computing paradigm. However, initializing a new virtual instance in a cloud is not instantaneous; cloud hosting platforms introduce several minutes delay in the hardware resource allocation. In this paper, we develop prediction-based resource measurement and provisioning strategies using Neural Network and Linear Regression to satisfy upcoming resource demands. Experimental results demonstrate that the proposed technique offers more adaptive resource management for applications hosted in the cloud environment, an important mechanism to achieve on-demand resource allocation in the cloud.

[1]  T. Sejnowski,et al.  Predicting the secondary structure of globular proteins using neural network models. , 1988, Journal of molecular biology.

[2]  Xiaowei Yang,et al.  CloudCmp: comparing public cloud providers , 2010, IMC '10.

[3]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[4]  B. Efron,et al.  A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .

[5]  Calvin L. Williams,et al.  Modern Applied Statistics with S-Plus , 1997 .

[6]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..

[7]  Sergios Theodoridis,et al.  Pattern Recognition, Fourth Edition , 2008 .

[8]  Luís Veiga,et al.  Heuristic for resources allocation on utility computing infrastructures , 2008, MGC '08.

[9]  Eddy Caron,et al.  Forecasting for Cloud computing on-demand resources based on pattern matching , 2010 .

[10]  Thomas G. Dietterich Machine Learning for Sequential Data: A Review , 2002, SSPR/SPR.

[11]  Bo Hong,et al.  Managing flash crowds on the Internet , 2003, 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003..

[12]  Jeffrey S. Chase,et al.  Automated control in cloud computing: challenges and opportunities , 2009, ACDC '09.

[13]  Naveen Sharma,et al.  Towards autonomic workload provisioning for enterprise Grids and clouds , 2009, 2009 10th IEEE/ACM International Conference on Grid Computing.

[14]  Daniel A. Menascé,et al.  Testing E-commerce Site Scalability With TPC-W , 2001, Int. CMG Conference.

[15]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[16]  Karl Nygren,et al.  Stock Prediction - A Neural Network Approach , 2004 .

[17]  Magne Jørgensen,et al.  Experience With the Accuracy of Software Maintenance Task Effort Prediction Models , 1995, IEEE Trans. Software Eng..

[18]  S. Weisberg Applied Linear Regression, 2nd Edition. , 1987 .

[19]  David A. Patterson,et al.  Rain: A Workload Generation Toolkit for Cloud Computing Applications , 2010 .

[20]  Alexander Halavais,et al.  The slashdot effect : analysis of a large-scale public conversation on the World Wide Web , 2001 .

[21]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[22]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[23]  Jean-Marc Menaud,et al.  Autonomic virtual resource management for service hosting platforms , 2009, 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing.

[24]  William N. Venables,et al.  Modern Applied Statistics with S-Plus. , 1996 .