An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system

An adaptive a posteriori error estimator based finite element method for the numerical solution of a coupled Cahn-Hilliard/Navier-Stokes system with a double-obstacle homogenous free (interfacial) energy density is proposed. A semi-implicit Euler scheme for the time-integration is applied which results in a system coupling a quasi-Stokes or Oseen-type problem for the fluid flow to a variational inequality for the concentration and the chemical potential according to the Cahn-Hilliard model [16]. A Moreau-Yosida regularization is employed which relaxes the constraints contained in the variational inequality and, thus, enables semi-smooth Newton solvers with locally superlinear convergence in function space. Moreover, upon discretization this yields a mesh independent method for a fixed relaxation parameter. For the finite dimensional approximation of the concentration and the chemical potential piecewise linear and globally continuous finite elements are used, and for the numerical approximation of the fluid velocity Taylor-Hood finite elements are employed. The paper ends by a report on numerical examples showing the efficiency of the new method.

[1]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[2]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[3]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[4]  J. F. Bloweyl,et al.  A phase-field model with a double obstacle potential , 1994 .

[5]  Michael Hintermüller,et al.  Moreau-Yosida Regularization in State Constrained Elliptic Control Problems: Error Estimates and Parameter Adjustment , 2009, SIAM J. Numer. Anal..

[6]  Rüdiger Verfürth,et al.  Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .

[7]  R. Maccormack Numerical Methods for the Navier-Stokes Equations , 1985 .

[8]  Dietrich Braess Finite Elements: Introduction , 2007 .

[9]  Harald Garcke,et al.  Allen-Cahn and Cahn-Hilliard Variational Inequalities Solved with Optimization Techniques , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[10]  E. L. Wright,et al.  Theory of collision-induced translation-rotation spectra: H2-He , 1984 .

[11]  Nicholas I. M. Gould,et al.  Preconditioning Saddle-Point Systems with Applications in Optimization , 2010, SIAM J. Sci. Comput..

[12]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[13]  Richard Welford,et al.  A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[14]  David Kay,et al.  Finite element approximation of a Cahn−Hilliard−Navier−Stokes system , 2008 .

[15]  Michael Ulbrich,et al.  A mesh-independence result for semismooth Newton methods , 2004, Math. Program..

[16]  Ralf Kornhuber,et al.  Nonsmooth Newton Methods for Set-Valued Saddle Point Problems , 2009, SIAM J. Numer. Anal..

[17]  Franck Boyer,et al.  Numerical study of viscoelastic mixtures through a Cahn–Hilliard flow model , 2004 .

[18]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[19]  David Kay,et al.  Efficient Numerical Solution of Cahn-Hilliard-Navier-Stokes Fluids in 2D , 2007, SIAM J. Sci. Comput..

[20]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[21]  Michael Hintermüller,et al.  A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs , 2011, Comput. Optim. Appl..

[22]  Harald Garcke,et al.  Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method , 2011 .

[23]  Martin Berggren,et al.  Hybrid differentiation strategies for simulation and analysis of applications in C++ , 2008, TOMS.

[24]  A. Reusken Analysis of an extended pressure finite element space for two-phase incompressible flows , 2008 .

[25]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[26]  Moulay Hicham Tber,et al.  An adaptive finite-element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem , 2011, Optim. Methods Softw..

[27]  Paul Papatzacos,et al.  Diffuse-Interface Models for Two-Phase Flow , 2000 .

[28]  Yann Brenier,et al.  Upper Bounds on Coarsening Rates in Demixing Binary Viscous Liquids , 2011, SIAM J. Math. Anal..

[29]  Eric D. Siggia,et al.  Late stages of spinodal decomposition in binary mixtures , 1979 .

[30]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[31]  Karl Kunisch,et al.  Path-following Methods for a Class of Constrained Minimization Problems in Function Space , 2006, SIAM J. Optim..

[32]  Charles M. Elliott,et al.  `A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy' , 1991 .

[33]  Junseok Kim,et al.  A diffuse-interface model for axisymmetric immiscible two-phase flow , 2005, Appl. Math. Comput..

[34]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[35]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[36]  R. Glowinski,et al.  Numerical methods for the navier-stokes equations. Applications to the simulation of compressible and incompressible viscous flows , 1987 .

[37]  Ralf Kornhuber,et al.  Multigrid Methods for Obstacle Problems , 2008 .

[38]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[39]  Kazufumi Ito,et al.  The primal-dual active set strategy as a semi-smooth Newton method for quadratic problems with affine constraints , 2002 .

[40]  Franck Boyer,et al.  Mathematical study of multi‐phase flow under shear through order parameter formulation , 1999 .

[41]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[42]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[43]  Jörg Peters,et al.  Fast Iterative Solvers for Discrete Stokes Equations , 2005, SIAM J. Sci. Comput..

[44]  Michael Hintermüller,et al.  Mesh independence and fast local convergence of a primal-dual active-set method for mixed control-state constrained elliptic control problems , 2007 .