An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system
暂无分享,去创建一个
Christian Kahle | Michael Hintermüller | Michael Hinze | M. Hintermüller | M. Hinze | Christian Kahle
[1] Franck Boyer,et al. A theoretical and numerical model for the study of incompressible mixture flows , 2002 .
[2] C. M. Elliott,et al. Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.
[3] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[4] J. F. Bloweyl,et al. A phase-field model with a double obstacle potential , 1994 .
[5] Michael Hintermüller,et al. Moreau-Yosida Regularization in State Constrained Elliptic Control Problems: Error Estimates and Parameter Adjustment , 2009, SIAM J. Numer. Anal..
[6] Rüdiger Verfürth,et al. Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .
[7] R. Maccormack. Numerical Methods for the Navier-Stokes Equations , 1985 .
[8] Dietrich Braess. Finite Elements: Introduction , 2007 .
[9] Harald Garcke,et al. Allen-Cahn and Cahn-Hilliard Variational Inequalities Solved with Optimization Techniques , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.
[10] E. L. Wright,et al. Theory of collision-induced translation-rotation spectra: H2-He , 1984 .
[11] Nicholas I. M. Gould,et al. Preconditioning Saddle-Point Systems with Applications in Optimization , 2010, SIAM J. Sci. Comput..
[12] Harald Garcke,et al. Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..
[13] Richard Welford,et al. A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..
[14] David Kay,et al. Finite element approximation of a Cahn−Hilliard−Navier−Stokes system , 2008 .
[15] Michael Ulbrich,et al. A mesh-independence result for semismooth Newton methods , 2004, Math. Program..
[16] Ralf Kornhuber,et al. Nonsmooth Newton Methods for Set-Valued Saddle Point Problems , 2009, SIAM J. Numer. Anal..
[17] Franck Boyer,et al. Numerical study of viscoelastic mixtures through a Cahn–Hilliard flow model , 2004 .
[18] YANQING CHEN,et al. Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .
[19] David Kay,et al. Efficient Numerical Solution of Cahn-Hilliard-Navier-Stokes Fluids in 2D , 2007, SIAM J. Sci. Comput..
[20] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[21] Michael Hintermüller,et al. A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs , 2011, Comput. Optim. Appl..
[22] Harald Garcke,et al. Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method , 2011 .
[23] Martin Berggren,et al. Hybrid differentiation strategies for simulation and analysis of applications in C++ , 2008, TOMS.
[24] A. Reusken. Analysis of an extended pressure finite element space for two-phase incompressible flows , 2008 .
[25] J. Lowengrub,et al. Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .
[26] Moulay Hicham Tber,et al. An adaptive finite-element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem , 2011, Optim. Methods Softw..
[27] Paul Papatzacos,et al. Diffuse-Interface Models for Two-Phase Flow , 2000 .
[28] Yann Brenier,et al. Upper Bounds on Coarsening Rates in Demixing Binary Viscous Liquids , 2011, SIAM J. Math. Anal..
[29] Eric D. Siggia,et al. Late stages of spinodal decomposition in binary mixtures , 1979 .
[30] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[31] Karl Kunisch,et al. Path-following Methods for a Class of Constrained Minimization Problems in Function Space , 2006, SIAM J. Optim..
[32] Charles M. Elliott,et al. `A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy' , 1991 .
[33] Junseok Kim,et al. A diffuse-interface model for axisymmetric immiscible two-phase flow , 2005, Appl. Math. Comput..
[34] P. Hohenberg,et al. Theory of Dynamic Critical Phenomena , 1977 .
[35] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[36] R. Glowinski,et al. Numerical methods for the navier-stokes equations. Applications to the simulation of compressible and incompressible viscous flows , 1987 .
[37] Ralf Kornhuber,et al. Multigrid Methods for Obstacle Problems , 2008 .
[38] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[39] Kazufumi Ito,et al. The primal-dual active set strategy as a semi-smooth Newton method for quadratic problems with affine constraints , 2002 .
[40] Franck Boyer,et al. Mathematical study of multi‐phase flow under shear through order parameter formulation , 1999 .
[41] Charles M. Elliott,et al. The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .
[42] Charles M. Elliott,et al. The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.
[43] Jörg Peters,et al. Fast Iterative Solvers for Discrete Stokes Equations , 2005, SIAM J. Sci. Comput..
[44] Michael Hintermüller,et al. Mesh independence and fast local convergence of a primal-dual active-set method for mixed control-state constrained elliptic control problems , 2007 .