Ghost SPH for animating water

We propose a new ghost fluid approach for free surface and solid boundary conditions in Smoothed Particle Hydrodynamics (SPH) liquid simulations. Prior methods either suffer from a spurious numerical surface tension artifact or drift away from the mass conservation constraint, and do not capture realistic cohesion of liquid to solids. Our Ghost SPH scheme resolves this with a new particle sampling algorithm to create a narrow layer of ghost particles in the surrounding air and solid, with careful extrapolation and treatment of fluid variables to reflect the boundary conditions. We also provide a new, simpler form of artificial viscosity based on XSPH. Examples demonstrate how the new approach captures real liquid behaviour previously unattainable by SPH with very little extra cost.

[1]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[2]  Matthias Teschner,et al.  Direct Forcing for Lagrangian Rigid-Fluid Coupling , 2009, IEEE Transactions on Visualization and Computer Graphics.

[3]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[4]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[5]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[6]  Javier Bonet,et al.  A simplified approach to enhance the performance of smooth particle hydrodynamics methods , 2002, Appl. Math. Comput..

[7]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[8]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[9]  Renato Pajarola,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) , 2022 .

[10]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[11]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[12]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[13]  Greg Humphreys,et al.  A spatial data structure for fast Poisson-disk sample generation , 2006, SIGGRAPH 2006.

[14]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[15]  Richard Keiser,et al.  Multiresolution particle-based fluids , 2006 .

[16]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[17]  Matthias Müller,et al.  A Multigrid Fluid Pressure Solver Handling Separating Solid Boundary Conditions , 2011, IEEE Transactions on Visualization and Computer Graphics.

[18]  Markus H. Gross,et al.  Interaction of fluids with deformable solids , 2004, Comput. Animat. Virtual Worlds.

[19]  Matthias Teschner,et al.  Boundary Handling and Adaptive Time-stepping for PCISPH , 2010, VRIPHYS.

[20]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[21]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[22]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[23]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[24]  Renato Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, ACM Trans. Graph..

[25]  Markus Gross,et al.  Two-scale particle simulation , 2011, SIGGRAPH 2011.

[26]  R. Fedkiw,et al.  Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method , 2002 .

[27]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.