The balance between proximity and diversity in multiobjective evolutionary algorithms

Over the last decade, a variety of evolutionary algorithms (EAs) have been proposed for solving multiobjective optimization problems. Especially more recent multiobjective evolutionary algorithms (MOEAs) have been shown to be efficient and superior to earlier approaches. An important question however is whether we can expect such improvements to converge onto a specific efficient MOEA that behaves best on a large variety of problems. In this paper, we argue that the development of new MOEAs cannot converge onto a single new most efficient MOEA because the performance of MOEAs shows characteristics of multiobjective problems. While we point out the most important aspects for designing competent MOEAs in this paper, we also indicate the inherent multiobjective tradeoff in multiobjective optimization between proximity and diversity preservation. We discuss the impact of this tradeoff on the concepts and design of exploration and exploitation operators. We also present a general framework for competent MOEAs and show how current state-of-the-art MOEAs can be obtained by making choices within this framework. Furthermore, we show an example of how we can separate nondomination selection pressure from diversity preservation selection pressure and discuss the impact of changing the ratio between these components.

[1]  Dirk Thierens,et al.  Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms , 2002, Int. J. Approx. Reason..

[2]  Fernando G. Lobo,et al.  Compressed introns in a linkage learning genetic algorithm , 1998 .

[3]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[4]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[5]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[6]  C. H. M. V. Kernenade Building block filtering and fixing , 1998 .

[7]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[8]  Heinz Mühlenbein,et al.  FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.

[9]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[10]  Marco Laumanns,et al.  Archiving With Guaranteed Convergence And Diversity In Multi-objective Optimization , 2002, GECCO.

[11]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[12]  Dirk Thierens,et al.  Advancing continuous IDEAs with mixture distributions and factorization selection metrics , 2001 .

[13]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[14]  Gang Wang,et al.  Revisiting the GEMGA: scalable evolutionary optimization through linkage learning , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[15]  Heinz Mühlenbein,et al.  A Factorized Distribution Algorithm Using Single Connected Bayesian Networks , 2000, PPSN.

[16]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[17]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[18]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[19]  van C.H.M. Kemenade Building block filtering and mixing , 1998 .

[20]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[21]  Marco Laumanns,et al.  A unified model for multi-objective evolutionary algorithms with elitism , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[22]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[23]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[24]  D. Corne,et al.  On Metrics for Comparing Non Dominated Sets , 2001 .

[25]  Gary B. Lamont,et al.  A Statistical Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA-II , 2001, EMO.

[26]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[27]  David E. Goldberg,et al.  Bayesian optimization algorithm, decision graphs, and Occam's razor , 2001 .

[28]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[29]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[30]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[31]  Shigeru Obayashi,et al.  Niching and Elitist Models for MOGAs , 1998, PPSN.

[32]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[33]  Marco Laumanns,et al.  On the Effects of Archiving, Elitism, and Density Based Selection in Evolutionary Multi-objective Optimization , 2001, EMO.

[34]  Kalyanmoy Deb,et al.  RapidAccurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms , 1993, ICGA.

[35]  Dirk Thierens,et al.  Multi-objective mixture-based iterated density estimation evolutionary algorithms , 2001 .

[36]  Kalyanmoy Deb,et al.  Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence , 2001, EMO.

[37]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[38]  Marco Laumanns,et al.  Why Quality Assessment Of Multiobjective Optimizers Is Difficult , 2002, GECCO.

[39]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[40]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[41]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[42]  Thomas Hanne,et al.  Global Multiobjective Optimization with Evolutionary Algorithms: Selection Mechanisms and Mutation Control , 2001, EMO.

[43]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[44]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[45]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[46]  Thomas Hanne,et al.  On the convergence of multiobjective evolutionary algorithms , 1999, Eur. J. Oper. Res..

[47]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[48]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .