Limit cycles in dynamic economic systems

The purpose of this paper is to identify economic mechanisms implying stable limit cycles. In particular, it is shown how the Hopf bifurcation theorem can be used to establish the existence of persistent oscillations in dynamic economic models. In most cases numerical methods have to be used to determine optimal cycles. While we start with a descriptive model, the main part deals with intertemporal optimization models. Several applications in operations research are dealt with. Examples in advertising, production, inventory, employment, R&D, and pollution control are presented.

[1]  J. Scheinkman On optimal steady states of n-sector growth models when utility is discounted☆ , 1976 .

[2]  F. Bass A new product growth model for consumer durables , 1976 .

[3]  G. Stigler The Economics of Information , 1961, Journal of Political Economy.

[4]  Gustav Feichtinger,et al.  On the optimality of limit cycles in dynamic economic systems , 1991 .

[5]  S. Sethi Dynamic Optimal Control Models in Advertising: A Survey , 1977 .

[6]  L. Montrucchio,et al.  On the indeterminacy of capital accumulation paths , 1986 .

[7]  Richard Schmalensee,et al.  The Economics Of Advertising , 1972 .

[8]  John D. C. Little,et al.  Feature Article - Aggregate Advertising Models: The State of the Art , 1979, Oper. Res..

[9]  S. Ożga,et al.  Imperfect Markets Through Lack of Knowledge , 1960 .

[10]  Bertil Näslund,et al.  Consumer Behaviour and Optimal Advertising , 1979 .

[11]  G. Feichtinger Limit cycles in economic control models , 1987 .

[12]  M. L. Vidale,et al.  An Operations-Research Study of Sales Response to Advertising , 1957 .

[13]  K. Arrow,et al.  OPTIMAL ADVERTISING POLICY UNDER DYNAMIC CONDITIONS , 1962 .

[14]  Hermann Simon,et al.  ADPULS: An Advertising Model with Wearout and Pulsation , 1982 .

[15]  William A. Brock,et al.  Nonlinearity And Complex Dynamics In Economics And Finance , 1988 .

[16]  Kazuo Nishimura,et al.  A Complete Characterization of Optimal Growth Paths in an Aggregated Model with a Non-Concave Production Function , 1983 .

[17]  Maurice W. Sasieni,et al.  Optimal Advertising Expenditure , 1971 .

[18]  T. A. J. Nicholson,et al.  The Optimization of Paper Machine Scheduling , 1969 .

[19]  Jose A. Scheinkman,et al.  Smoothness, Comparative Dynamics, and the Turnpike Property , 1977 .

[20]  R. Rockafellar Saddle points of Hamiltonian systems in convex Lagrange problems having a nonzero discount rate , 1976 .

[21]  Richard F. Hartl,et al.  Adpuls in continuous time , 1988 .

[22]  N. Bailey The mathematical theory of epidemics , 1957 .

[23]  Gustav Feichtinger,et al.  Hopf bifurcation in an advertising diffusion model , 1992 .

[24]  Tapan Mitra,et al.  Intertemporal allocation with a non-convex technology: The aggregative framework , 1982 .

[25]  Geoffrey Heal,et al.  Optimal Growth with Intertemporally Dependent Preferences , 1973 .

[26]  Fred M. Feinberg,et al.  Pulsing Policies for Aggregate Advertising Models , 1992 .

[27]  Oscillations in optimal growth models , 1987 .

[28]  R. Hartl,et al.  OPTIMAL CONTROL PROBLEMS WITH DIFFERENTIAL INCLUSIONS: SUFFICIENCY CONDITIONS AND AN APPLICATION TO A PRODUCTION-INVENTORY MODEL. , 1984 .

[29]  E. Muller,et al.  Models of New Product Diffusion Through Advertising and Word-of-Mouth , 1978 .

[30]  Richard F. Baum,et al.  Existence theorems for lagrange control problems with unbounded time domain , 1976 .

[31]  Richard F. Hartl,et al.  On the optimality of cyclical employment policies: A Numerical Investigation , 1986 .

[32]  Suresh P. Sethi,et al.  Optimal advertising policy with the contagion model , 1979 .

[33]  A. Jacquemin,et al.  OPTIMAL CONTROL AND ADVERTISING POLICY , 1973 .

[34]  A. Skiba,et al.  Optimal Growth with a Convex-Concave Production Function , 1978 .

[35]  Eitan Muller,et al.  Trial/awareness advertising decisions: A control problem with phase diagrams with non-stationary boundaries , 1983 .

[36]  Gerald L. Thompson,et al.  Management Applications of Modern Control Theory , 1977 .

[37]  W. Brock,et al.  Global Asymptotic Stability of Optimal Control Systems with Applications to the Theory of Economic Growth , 1976 .

[38]  J. Benhabib A note on optimal growth and intertemporally dependent preferences , 1978 .

[39]  G. Feichtinger,et al.  Optimal consumption, training, working time, and leisure over the life cycle , 1992 .

[40]  Stephen Glaister,et al.  Advertising Policy and Returns to Scale in Markets where Information is Passed Between Individuals , 1974 .

[41]  Gustav Feichtinger,et al.  Optimale Kontrolle ökonomischer Prozesse : Anwendungen des Maximumprinzips in den Wirtschaftswissenschaften , 1986 .

[42]  Vijay Mahajan,et al.  Advertising Pulsing Policies for Generating Awareness for New Products , 1986 .

[43]  A problem in jointly optimal production and advertising decisions , 1986 .

[44]  J. P. Gould,et al.  Diffusion Processes and Optimal Advertising Policy , 1976 .

[45]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[46]  S. Salop Wage differentials in a dynamic theory of the firm , 1973 .

[47]  Michele Boldrin,et al.  Persistent Oscillations and Chaos in Dynamic Economic Models: Notes for a Survey , 1988 .

[48]  Andreas J. Novak,et al.  Cyclical production and marketing decisions: application of Hopt Bifurcation Theory , 1991 .

[49]  P. L’Ecuyer,et al.  Optimal research and development expenditures under an incremental tax incentive scheme , 1985 .

[50]  Richard F. Hartl,et al.  A simple proof of the monotonicity of the state trajectories in autonomous control problems , 1987 .

[51]  Gustav Feichtinger,et al.  Optimal oscillations in control models: How can constant demand lead to cyclical production? , 1986 .

[52]  V. Mahajan,et al.  Introduction Strategy for New Products with Positive and Negative Word-of-Mouth , 1984 .

[53]  R. Dorfman,et al.  Optimal Advertising and Optimal Quality , 1976 .

[54]  C. C. Holt,et al.  Planning Production, Inventories, and Work Force. , 1962 .

[55]  Kazuo Nishimura,et al.  The hopf bifurcation and the existence and stability of closed orbits in multisector models of optimal economic growth , 1979 .

[56]  U. Ascher,et al.  A collocation solver for mixed order systems of boundary value problems , 1979 .

[57]  G. Owen Multilinear Extensions of Games , 1972 .