Sensing of unexploded ordnance with magnetometer and induction data: theory and signal processing

We consider the detection of subsurface unexploded ordnance via magnetometer and electromagnetic-induction (EMI) sensors. Detection performance is presented, using model-based signal processing algorithms. We first develop and validate the parametric models, using both numerical and measured data. These models are then applied in the context of feature extraction, and the features are processed via two signal-processing algorithms. The detection algorithms are discussed in detail, with comparisons made based on performance with measured magnetometer and EMI data.

[1]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[2]  Waymond R. Scott,et al.  A finite-difference model to study the elastic-wave interactions with buried land mines , 2000, IEEE Trans. Geosci. Remote. Sens..

[3]  L. Peters,et al.  Buried unexploded ordnance identification via complex natural resonances , 1997 .

[4]  Christoph W. Ueberhuber Numerical Computations, Volume II , 1997 .

[5]  T. P. Montoya,et al.  Land mine detection using a ground-penetrating radar based on resistively loaded Vee dipoles , 1999 .

[6]  C. Baum The singularity expansion method , 1976 .

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  James R. McDonald,et al.  Using physics-based modeler outputs to train probabilistic neural networks for unexploded ordnance (UXO) classification in magnetometry surveys , 2001, IEEE Trans. Geosci. Remote. Sens..

[9]  E. S. Shire,et al.  Classical electricity and magnetism , 1960 .

[10]  Yacine Dalichaouch,et al.  On the wideband EMI response of a rotationally symmetric permeable and conducting target , 2001, IEEE Trans. Geosci. Remote. Sens..

[11]  James R. McDonald,et al.  Multisensor towed array detection system for UXO detection , 2001, IEEE Trans. Geosci. Remote. Sens..

[12]  Carl V. Nelson,et al.  Wide bandwidth time-domain electromagnetic sensor for metal target classification , 2001, IEEE Trans. Geosci. Remote. Sens..

[13]  Carl E. Baum,et al.  On the low-frequency natural response of conducting and permeable targets , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  Christoph W. Ueberhuber,et al.  Numerical Computation 2 , 1997 .

[15]  I. J. Won,et al.  GEM‐3: A Monostatic Broadband Electromagnetic Induction Sensor , 1997 .