On the complexity of computing quadrature formulas for marginal distributions of SDEs

Abstract We study the problem of approximating the distribution of the solution of a d -dimensional system of stochastic differential equations (SDEs) at a single time point by a probability measure with finite support, i.e., by a quadrature formula with positive weights summing up to one. We consider deterministic algorithms that may use finitely many evaluations of the drift coefficient and the diffusion coefficient and we analyze their worst case behavior with respect to classes of SDEs, which are specified in terms of smoothness constraints for the coefficients of the equation. The worst case error of an algorithm is defined in terms of a metric on the space of probability measures on the state space of the solution, which is induced by a class of test functions f : R d → R . For the definition of the worst case cost of an algorithm we either consider the size of the support of the approximating probability measure or the number of evaluations of the coefficients of the equation or the total computational cost within the real number model without pricing precomputation. We show that the order of convergence of the corresponding minimal errors is r / d , min ( s 1 , s 2 ) / d and min ( r , s 1 , s 2 ) / d , respectively, up to an arbitrarily small power, where the parameters r , s 1 and s 2 denote the smoothness of the test functions, the drift coefficients and the diffusion coefficients, respectively.

[1]  Lutz Kämmerer Reconstructing hyperbolic cross trigonometric polynomials by sampling along generated sets , 2012 .

[2]  André Uschmajew,et al.  Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..

[3]  Christian Bender,et al.  A Posteriori Estimates for Backward SDEs , 2013, SIAM/ASA J. Uncertain. Quantification.

[4]  Othmar Koch,et al.  Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..

[5]  Wolfgang Dahmen,et al.  DOUBLE GREEDY ALGORITHMS: REDUCED BASIS METHODS FOR TRANSPORT DOMINATED PROBLEMS ∗ , 2013, 1302.5072.

[6]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[7]  Wolfgang Hackbusch,et al.  Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.

[8]  C. Litterer,et al.  High order recombination and an application to cubature on Wiener space , 2010 .

[9]  D. Rudolf,et al.  Hit-and-Run for Numerical Integration , 2012, 1212.4486.

[10]  A. Uschmajew,et al.  LOCAL CONVERGENCE OF ALTERNATING SCHEMES FOR OPTIMIZATION OF CONVEX PROBLEMS IN THE TT FORMAT , 2011 .

[11]  Lars Grasedyck,et al.  Polynomial Approximation in Hierarchical Tucker Format by Vector – Tensorization , 2010 .

[12]  Wang-Q Lim,et al.  Image Separation Using Shearlets , 2011 .

[13]  E. Novak,et al.  Tractability of Multivariate Problems, Volume III: Standard Information for Operators. , 2012 .

[14]  Thomas Müller-Gronbach,et al.  Deterministic Quadrature Formulas for SDEs Based on Simplified Weak Itô–Taylor Steps , 2016, Found. Comput. Math..

[15]  H. Wozniakowski,et al.  A new algorithm and worst case complexity for Feynman-Kac path integration , 2000 .

[16]  Wolfgang Dahmen,et al.  Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.

[17]  Steffen Dereich,et al.  Multilevel Monte Carlo algorithms for L\'{e}vy-driven SDEs with Gaussian correction , 2011, 1101.1369.

[18]  P. Maass,et al.  An analysis of electrical impedance tomography with applications to Tikhonov regularization , 2012 .

[19]  Michael Gnewuch,et al.  On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..

[20]  Henryk Wozniakowski,et al.  Complexity of oscillatory integration for univariate Sobolev spaces , 2013, J. Complex..

[21]  Gabriele Steidl,et al.  Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings , 2011 .

[22]  Wolfgang Dahmen,et al.  Fast high-dimensional approximation with sparse occupancy trees , 2011, J. Comput. Appl. Math..

[23]  W. Lim,et al.  Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.

[24]  Stephan Dahlke,et al.  Piecewise tensor product wavelet bases by extensions and approximation rates , 2013, Math. Comput..

[25]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[26]  Reinhold Schneider,et al.  Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..

[27]  Stephan Dahlke,et al.  A note on quarkonial systems and multilevel partition of unity methods , 2013 .

[28]  Klaus Ritter,et al.  On embeddings of weighted tensor product Hilbert spaces , 2015, J. Complex..

[29]  R. Schilling,et al.  Weak Order for the Discretization of the Stochastic Heat Equation Driven by Impulsive Noise , 2009, 0911.4681.

[30]  Armin Iske,et al.  Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..

[31]  Reinhold Schneider,et al.  An analysis for the DIIS acceleration method used in quantum chemistry calculations , 2011 .

[32]  Hermann G. Matthies,et al.  Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats , 2014, Comput. Math. Appl..

[33]  Hermann G. Matthies,et al.  Efficient Analysis of High Dimensional Data in Tensor Formats , 2012 .

[34]  Matthias Hein,et al.  The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited , 2013, NIPS.

[35]  Karsten Urban,et al.  Adaptive Wavelet Methods on Unbounded Domains , 2012, Journal of Scientific Computing.

[36]  Wolfgang Hackbusch,et al.  An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..

[37]  Lars Grasedyck,et al.  Tree Adaptive Approximation in the Hierarchical Tensor Format , 2014, SIAM J. Sci. Comput..

[38]  Henryk Wozniakowski,et al.  The curse of dimensionality for numerical integration of smooth functions , 2012, Math. Comput..

[39]  Dirk A. Lorenz,et al.  Beyond convergence rates: exact recovery with the Tikhonov regularization with sparsity constraints , 2010, 1001.3276.

[40]  Reinhold Schneider,et al.  Numerical analysis of Gaussian approximations in quantum chemistry , 2012 .

[41]  Tobias Jahnke,et al.  Error Bound for Piecewise Deterministic Processes Modeling Stochastic Reaction Systems , 2012, Multiscale Model. Simul..

[42]  Philip J. Davis A Construction of Nonnegative Approximate Quadratures , 1967 .

[43]  Winfried Sickel,et al.  Best m-Term Approximation and Sobolev–Besov Spaces of Dominating Mixed Smoothness—the Case of Compact Embeddings , 2012 .

[44]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[45]  Harry Yserentant,et al.  The Electronic Schrödinger Equation , 2010 .

[46]  G. Kutyniok,et al.  Irregular Shearlet Frames: Geometry and Approximation Properties , 2010, 1002.2657.

[47]  Stephan Dahlke,et al.  Adaptive Wavelet Schwarz Methods for the Navier-Stokes Equation , 2016 .

[48]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[49]  K. Ritter,et al.  Adaptive Wavelet Methods for Elliptic Stochastic Partial Differential Equations , 2022 .

[50]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[51]  S. Dereich,et al.  Constructive quantization: Approximation by empirical measures , 2011, 1108.5346.

[52]  Terry Lyons,et al.  Efficient and Practical Implementations of Cubature on Wiener Space , 2011 .

[53]  Andreas Zeiser,et al.  Wavelet Approximation in Weighted Sobolev Spaces of Mixed Order with Applications to the Electronic Schrödinger Equation , 2012 .

[54]  Erich Novak,et al.  The Real Number Model in Numerical Analysis , 1995, J. Complex..

[55]  Simen Kvaal,et al.  Multiconfigurational time-dependent Hartree method to describe particle loss due to absorbing boundary conditions , 2011, 1102.3899.

[56]  Erwan Faou,et al.  Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..

[57]  Wolfgang Dahmen,et al.  Approximation of High-Dimensional Rank One Tensors , 2013, Constructive Approximation.

[58]  Klaus Ritter,et al.  Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.

[59]  Ianwei,et al.  Compressive Video Sampling with Approximate Message Passing Decoding , 2011 .

[60]  Harry Yserentant,et al.  The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces , 2012, Numerische Mathematik.

[61]  E. Novak,et al.  On the power of function values for the approximation problem in various settings , 2010, 1011.3682.

[62]  Christian Bender,et al.  A PRIMAL–DUAL ALGORITHM FOR BSDES , 2013, 1310.3694.

[63]  Stefan Kunis,et al.  Effective Discretization of Direct Reconstruction Schemes For Photoacoustic Imaging In Spherical Geometries , 2014, SIAM J. Numer. Anal..

[64]  M. Hansen,et al.  n-term approximation rates and Besov regularity for elliptic PDEs on polyhedral domains , 2012 .

[65]  Stephan Dahlke,et al.  Spatial Besov regularity for semilinear stochastic partial differential equations on bounded Lipschitz domains , 2012, Int. J. Comput. Math..

[66]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[67]  Randolph E. Bank,et al.  On the $${H^1}$$H1-stability of the $${L_2}$$L2-projection onto finite element spaces , 2014, Numerische Mathematik.

[68]  Reinhold Schneider,et al.  Error estimates for the Coupled Cluster method , 2013 .

[69]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[70]  Massimo Fornasier,et al.  Multilevel preconditioning for sparse optimization of functionals with nonconvex fidelity terms , 2015 .

[71]  G. Constantain,et al.  Probability Metrics and the Stability of Stochastic Models , 1995 .

[72]  Wolfgang Dahmen,et al.  Super-Resolution Image Reconstruction by Nonlocal Means Applied to High-Angle Annular Darkfield Scanning Transmission Electron Microscopy (HAADF-STEM) , 2009 .

[73]  Fred J. Hickernell,et al.  Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..

[74]  I. Gihman,et al.  Stochastic Differential Equations , 1975 .

[75]  D. Potts,et al.  Approximation of multivariate functions by trigonometric polynomials based on rank-1 lattice sampling , 2013 .

[76]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[77]  Tobias Jahnke,et al.  Solving chemical master equations by adaptive wavelet compression , 2010, J. Comput. Phys..

[78]  Felix Lindner,et al.  Singular behavior of the solution to the stochastic heat equation on a polygonal domain , 2013, Stochastic Partial Differential Equations: Analysis and Computations.

[79]  Reinhold Schneider,et al.  Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations , 2015 .

[80]  Youming Li,et al.  Worst case complexity of multivariate Feynman-Kac path integration , 2003, J. Complex..

[81]  Klaus Ritter,et al.  On the complexity of parabolic initial-value problems with variable drift , 2006, J. Complex..

[82]  Michael Griebel,et al.  An Adaptive Sparse Grid Semi-Lagrangian Scheme for First Order Hamilton-Jacobi Bellman Equations , 2012, Journal of Scientific Computing.

[83]  Erich Novak,et al.  A Tractability Result for the Clenshaw Curtis Smolyak Algorithm , 2013 .

[84]  Gitta Kutyniok,et al.  Data Separation by Sparse Representations , 2011, Compressed Sensing.

[85]  Andreas Neuenkirch,et al.  Multilevel Monte Carlo Quadrature of Discontinuous Payoffs in the Generalized Heston Model Using Malliavin Integration by Parts , 2015, SIAM J. Financial Math..

[86]  Wolfgang Dahmen,et al.  Classification algorithms using adaptive partitioning , 2014, 1411.0839.

[87]  Wolfgang Dahmen,et al.  Compressed Sensing and Electron Microscopy , 2010 .

[88]  Steffen Dereich,et al.  The High Resolution Vector Quantization Problem with Orlicz Norm Distortion , 2010, 1010.4248.

[89]  Wang-Q Lim,et al.  Compactly Supported Shearlets , 2010, 1009.4359.

[90]  Klaus Ritter,et al.  A Local Refinement Strategy for Constructive Quantization of Scalar SDEs , 2013, Found. Comput. Math..

[91]  E. Novak Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .

[92]  G. Teschke,et al.  Inversion of the noisy Radon transform on SO(3) by Gabor frames and sparse recovery principles , 2011 .

[93]  Claude Jeffrey Gittelson,et al.  On tensor products of quasi-Banach spaces , 2010 .

[94]  Thorsten Rohwedder,et al.  The continuous Coupled Cluster formulation for the electronic Schrödinger equation , 2013 .

[95]  Klaus Ritter,et al.  Spatial Besov Regularity for Stochastic Partial Differential Equations on Lipschitz Domains , 2010, 1011.1814.

[96]  Petru A. Cioica,et al.  On the $L_q(L_p)$-regularity and Besov smoothness of stochastic parabolic equations on bounded Lipschitz domains , 2013, 1301.1180.

[97]  Torsten Görner,et al.  Efficient and accurate computation of spherical mean values at scattered center points , 2012 .

[98]  G. Teschke,et al.  Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems , 2010 .

[99]  Susanne Kruse,et al.  A Generalized Parametrix Method Smoothness of Random Fields and Applications to Parabolic Stochastic Partial Differential Equations , 2001 .

[100]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[101]  Christian Bender,et al.  Primal and Dual Pricing of Multiple Exercise Options in Continuous Time , 2011, SIAM J. Financial Math..

[102]  Wang-Q Lim,et al.  Shearlets on Bounded Domains , 2010, 1007.3039.

[103]  Terry Lyons,et al.  Cubature on Wiener space , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[104]  E. Ullmann,et al.  Preconditioning Stochastic Galerkin Saddle Point Problems , 2022 .

[105]  K. Ritter,et al.  On the convergence analysis of Rothe ’ s method , 2022 .

[106]  R. Schneider,et al.  The Alternating Linear Scheme for Tensor Optimisation in the TT Format , 2022 .

[107]  Konstantin Grella,et al.  Sparse tensor spherical harmonics approximation in radiative transfer , 2010 .

[108]  Henryk Wozniakowski,et al.  Discontinuous information in the worst case and randomized settings , 2011, 1106.2945.

[109]  Wolfgang Dahmen,et al.  Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..

[110]  Sadegh Jokar,et al.  Sparse recovery and Kronecker products , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[111]  Erich Novak,et al.  The Curse of Dimensionality for Monotone and Convex Functions of Many Variables , 2010, 1011.3680.

[112]  Armin Iske,et al.  On Groupoid C∗-Algebras, Persistent Homology and Time-Frequency Analysis , 2011 .

[113]  Stephan Dahlke,et al.  An adaptive wavelet method for parameter identification problems in parabolic partial differential equations , 2022 .

[114]  Christian Bender,et al.  Error Criteria for Numerical Solutions of Backward SDEs , 2010 .

[115]  D. Crisan,et al.  Robust filtering: Correlated noise and multidimensional observation , 2012, 1201.1858.

[116]  Mario Ullrich,et al.  Positivity of hit-and-run and related algorithms , 2012, 1212.4512.

[117]  Klaus Ritter,et al.  Derandomization of the Euler scheme for scalar stochastic differential equations , 2012, J. Complex..

[118]  Lutz Kämmerer,et al.  Interpolation lattices for hyperbolic cross trigonometric polynomials , 2012, J. Complex..

[119]  Steffen Dereich,et al.  Foundations of Computational Mathematics, Budapest 2011: On the Complexity of Computing Quadrature Formulas for SDEs , 2012 .

[120]  Lutz Kämmerer,et al.  On the stability of the hyperbolic cross discrete Fourier transform , 2011, Numerische Mathematik.

[121]  S. Kruse,et al.  Parabolic Differential Equations with Unbounded Coefficients – A Generalization of the Parametrix Method , 2002 .

[122]  Armin Iske,et al.  Curvature analysis of frequency modulated manifolds in dimensionality reduction , 2011 .

[123]  Karsten Urban,et al.  On Wavelet-Galerkin Methods for Semilinear Parabolic Equations with Additive Noise , 2013 .

[124]  Armin Iske,et al.  Optimal representation of piecewise Hölder smooth bivariate functions by the Easy Path Wavelet Transform , 2013, J. Approx. Theory.

[125]  Harry Yserentant,et al.  The mixed regularity of electronic wave functions multiplied by explicit correlation factors , 2011 .

[126]  Reinhold Schneider,et al.  On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.

[127]  David L. Ragozin,et al.  Constructive polynomial approximation on spheres and projective spaces. , 1971 .

[128]  Elisabeth Ullmann,et al.  Stochastic Galerkin Matrices , 2010, SIAM J. Matrix Anal. Appl..

[129]  Wolfgang Dahmen,et al.  Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .

[130]  Reinhold Schneider,et al.  Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..

[131]  Tobias Jahnke,et al.  On Reduced Models for the Chemical Master Equation , 2011, Multiscale Model. Simul..

[132]  S. Kusuoka Approximation of Expectation of Diffusion Process and Mathematical Finance , 2001 .

[133]  Denis Belomestny,et al.  Multilevel dual approach for pricing American style derivatives , 2012, Finance Stochastics.

[134]  Gerlind Plonka,et al.  Wavelet Shrinkage on Paths for Denoising of Scattered Data , 2012 .

[135]  Dajana Conte,et al.  Mathematical Modelling and Numerical Analysis an Error Analysis of the Multi-configuration Time-dependent Hartree Method of Quantum Dynamics , 2022 .

[136]  D. Rudolf,et al.  Explicit error bounds for Markov chain Monte Carlo , 2011, 1108.3201.

[137]  Howard C. Elman,et al.  Efficient Iterative Solvers for Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Problems , 2012, SIAM J. Sci. Comput..

[138]  S. Kusuoka Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus , 2003 .

[139]  Winfried Sickel,et al.  Best m-term aproximation and tensor product of Sobolev and Besov spaces-the case of non-compact embeddings , 2010 .

[140]  Christian Bender,et al.  Least-Squares Monte Carlo for Backward SDEs , 2012 .

[141]  Daniela Rosca,et al.  A New Hybrid Method for Image Approximation Using the Easy Path Wavelet Transform , 2011, IEEE Transactions on Image Processing.

[142]  Harry Yserentant,et al.  A Short Theory of the Rayleigh–Ritz Method , 2013, Comput. Methods Appl. Math..

[143]  Winfried Sickel,et al.  On Besov regularity of solutions to nonlinear elliptic partial differential equations , 2020, Nonlinear Analysis.

[144]  Yonina C. Eldar,et al.  Introduction to Compressed Sensing , 2022 .