ECOM: A fast and accurate solver for toroidal axisymmetric MHD equilibria

Abstract We present ECOM (Equilibrium solver via COnformal Mapping), a fast and accurate fixed boundary solver for toroidally axisymmetric magnetohydrodynamic equilibria with or without a toroidal flow. ECOM combines conformal mapping and Fourier and integral equation methods on the unit disk to achieve exponential convergence for the poloidal flux function as well as its first and second partial derivatives. As a consequence of its high order accuracy, for dense grids and elongations comparable to or smaller than the elongation of ITER, ECOM computes key quantities such as the safety factor and the magnetic shear with higher accuracy than the finite element based code CHEASE (Lutjens et al., 1996) at equal run time. ECOM has been developed to provide equilibrium quantities and details of the flux contour geometry as inputs to stability, wave propagation and transport codes.

[1]  Laurent Villard,et al.  The effect of plasma triangularity on turbulent transport: modeling TCV experiments by linear and non-linear gyrokinetic simulations , 2009 .

[2]  Jet Efda Contributors,et al.  Non-inductive current drive and transport in high βN plasmas in JET , 2009 .

[3]  W. Marsden I and J , 2012 .

[4]  J. Greene,et al.  Noncircular, finite aspect ratio, local equilibrium model , 1998 .

[5]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[6]  J. Manickam,et al.  Numerical study of tokamak equilibria with arbitrary flow , 2004 .

[7]  Jeff M. Candy,et al.  Tokamak profile prediction using direct gyrokinetic and neoclassical simulation , 2009 .

[8]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  M Barnes,et al.  Zero-turbulence manifold in a toroidal plasma. , 2012, Physical review letters.

[12]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[13]  B. M. Fulk MATH , 1992 .

[14]  R. Aymar,et al.  The ITER design , 2002 .

[15]  F. Hinton,et al.  Neoclassical ion transport in rotating axisymmetric plasmas , 1985 .

[16]  Laurent Villard,et al.  Clarifications to the limitations of the s-α equilibrium model for gyrokinetic computations of turbulence , 2009 .

[17]  Y. Camenen,et al.  Transport of parallel momentum induced by current-symmetry breaking in toroidal plasmas. , 2009, Physical review letters.

[18]  Satoshi Hamaguchi,et al.  High-n ballooning instabilities in toroidally rotating tokamaks , 2001 .

[19]  R. Gruber,et al.  MHD-limits to plasma confinement , 1984 .

[20]  M Barnes,et al.  Turbulent transport in tokamak plasmas with rotational shear. , 2010, Physical review letters.

[21]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[22]  A. Bondeson,et al.  Resistive toroidal stability of internal kink modes in circular and shaped tokamaks , 1992 .

[23]  R. L. Miller,et al.  Stabilization of ballooning modes with sheared toroidal rotation , 1994 .

[24]  L. L. Lodestro,et al.  On the Grad–Shafranov equation as an eigenvalue problem, with implications for q solvers , 1994 .

[25]  J. P. Goedbloed,et al.  New Alfven continuum gaps and global modes induced by toroidal flow , 2000, Physical review letters.

[26]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[27]  Xujing Li,et al.  Edge equilibrium code for tokamaks , 2014 .

[28]  A. J. C. Beliën,et al.  Low frequency Alfvén waves induced by toroidal flows , 2000 .

[29]  E. D. Fredrickson,et al.  Internal kink mode dynamics in high-β NSTX plasmas , 2005 .

[30]  Andras Pataki High order methods for elliptic problems in plasma physics , 2011 .

[31]  Tait,et al.  Local measurements of correlated momentum and heat transport in the TFTR tokamak. , 1990, Physical review letters.

[32]  H. P. Zehrfeld,et al.  Computation of symmetric ideal MHD flow equilibria , 1984 .

[33]  J. P. Goedbloed Some remarks on computing axisymmetric equilibria , 1984 .

[34]  L. L. Lao,et al.  Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII‐D high performance discharges , 1996 .

[35]  M Barnes,et al.  Momentum injection in tokamak plasmas and transitions to reduced transport. , 2010, Physical review letters.

[36]  Carl R. Sovinec,et al.  Solving the Grad-Shafranov equation with spectral elements , 2014, Comput. Phys. Commun..

[37]  Hameiri,et al.  Stability of ballooning modes in a rotating plasma. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[38]  Leslie Greengard,et al.  A fast, high-order solver for the Grad-Shafranov equation , 2012, J. Comput. Phys..

[40]  Steven J. Plimpton,et al.  Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .

[41]  Marco Brambilla,et al.  Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .

[42]  Leslie Greengard,et al.  A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions , 2001, SIAM J. Sci. Comput..

[43]  Elias M. Stein,et al.  The Cauchy kernel, the Szegö kernel, and the Riemann mapping function , 1978 .

[44]  A. Bondeson,et al.  Axisymmetric MHD equilibrium solver with bicubic Hermite elements , 1992 .

[45]  M. Barnes,et al.  Direct multiscale coupling of a transport code to gyrokinetic turbulence codes , 2009, 0912.1974.

[46]  Peter J. Catto,et al.  Turbulent transport of toroidal angular momentum in low flow gyrokinetics , 2010 .

[47]  K. Lackner,et al.  Computation of ideal MHD equilibria , 1976 .

[48]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[49]  J. P. Goedbloed,et al.  CASTOR: Normal-Mode Analysis of Resistive MHD Plasmas☆ , 1998 .

[50]  Shinji Tokuda,et al.  Computation of MHD equilibrium of Tokamak Plasma , 1991 .

[51]  J. Pain Plasma Physics , 1968, Nature.

[52]  Thomas M. Antonsen,et al.  Spontaneous and driven perpendicular rotation in tokamaks , 1993 .

[53]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[54]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[55]  L. C. Woods Physics of plasmas , 2003 .

[56]  Francis F. Chen Plasma Physics and Controlled Fusion , 1984 .

[57]  Frank Jenko,et al.  The global version of the gyrokinetic turbulence code GENE , 2011, J. Comput. Phys..

[58]  A. Pletzer,et al.  Theory of perturbed equilibria for solving the Grad–Shafranov equation , 1999 .

[59]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[60]  P. T. Bonoli,et al.  Possible achievement of second stability by means of lower hybrid current drive , 1989 .

[61]  Manfred R. Trummer,et al.  Numerical conformal mapping via the Szego¨ Kernel , 1986 .

[62]  H. P. Zehrfeld,et al.  The Effect of Plasma Flow on the Toroidal Equilibrium Shift , 1973 .

[63]  Steven Paul Hirshman,et al.  Finite‐aspect‐ratio effects on the bootstrap current in tokamaks , 1988 .

[64]  C. Mercier,et al.  A necessary condition for hydromagnetic stability of plasma with axial symmetry , 1960 .

[65]  L. Greengard,et al.  A Fast Poisson Solver for Complex Geometries , 1995 .

[66]  W. A. Cooper Ballooning instabilities in tokamaks with sheared toroidal flows , 1988 .

[67]  H. Weitzner,et al.  A bifurcation problem in E-layer equilibria , 1970 .

[68]  Kurt Georg,et al.  On the convergence of an inverse iteration method for nonlinear elliptic eigenvalue problems , 1979 .

[69]  Arie Shoshani,et al.  Whole-volume integrated gyrokinetic simulation of plasma turbulence in realistic diverted-tokamak geometry , 2009 .

[70]  Alan H. Morris,et al.  Concurrent, parallel, multiphysics coupling in the FACETS project , 2009 .

[71]  H. Perrin,et al.  Exact solutions of the stationary MHD equations for a rotating toroidal plasma , 1980 .

[72]  Thomas J. Dolan,et al.  Plasma Physics and Fusion Energy , 2008 .

[73]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[74]  Stephen C. Jardin,et al.  A triangular finite element with first-derivative continuity applied to fusion MHD applications , 2004 .

[75]  J. P. Goedbloed,et al.  FINESSE: axisymmetric MHD equilibria with flow , 2002 .

[76]  Russell M. Kulsrud,et al.  Time evolution of mass flows in a collisional tokamak , 1978 .

[77]  Francois Waelbroeck,et al.  Gyroscopic stabilization of the internal kink mode , 1996 .

[78]  Rony Keppens,et al.  Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2010 .

[79]  Y. Gribov,et al.  Stabilization of resistive wall modes in ITER by active feedback and toroidal rotation , 2004 .

[80]  W. A. Cooper Normal curvature, local magnetic shear and parallel current density in tokamaks and torsatrons , 1997 .