Quantitative Absorption Spectroscopy of a Single Gold Nanorod

The spectrally- and polarization-resolved absorption cross-sections of a single gold nanorod have been investigated using the spatial modulation spectroscopy technique. The ensemble of its optical features, that is, longitudinal and transverse surface plasmon resonances and interband absorption, has been quantitatively characterized. The results are compared with numerical simulations using the discrete dipole approximation and the finite element method, yielding information on the investigated nanorod size and shape.

[1]  O. Muskens,et al.  Optical response of a single noble metal nanoparticle , 2006 .

[2]  M. Pileni,et al.  Silver nanodisks: optical properties study using the discrete dipole approximation method. , 2005, The journal of physical chemistry. B.

[3]  Catherine J. Murphy,et al.  CONTROLLING THE ASPECT RATIO OF INORGANIC NANORODS AND NANOWIRES , 2002 .

[4]  Xuchuan Jiang,et al.  Gold nanorods : Limitations on their synthesis and optical properties , 2006 .

[5]  I. Sosa,et al.  Optical Properties of Metal Nanoparticles with Arbitrary Shapes , 2003, cond-mat/0304216.

[6]  Mostafa A. El-Sayed,et al.  Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition , 2002 .

[7]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[8]  Al-Sayed A. Al-Sherbini Thermal instability of gold nanorods in micellar solution of water/glycerol mixtures , 2004 .

[9]  Ji-Xin Cheng,et al.  Hyperthermic effects of gold nanorods on tumor cells. , 2007, Nanomedicine.

[10]  M. El-Sayed,et al.  Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. , 2005, The journal of physical chemistry. B.

[11]  M. El-Sayed,et al.  The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal , 2000 .

[12]  M. Broyer,et al.  Direct measurement of the single-metal-cluster optical absorption. , 2004, Physical review letters.

[13]  T. Jenkins,et al.  High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy , 2003 .

[14]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[15]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[16]  Paul Mulvaney,et al.  Gold nanorod extinction spectra , 2006 .

[17]  M. Pileni,et al.  Gold nanorods: Influence of various parameters as seeds, solvent, surfactant on shape control , 2007 .

[18]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[19]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[20]  Christophe Voisin,et al.  Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles , 2001 .

[21]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[22]  C. Flytzanis,et al.  Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles , 2000 .

[23]  M. Broyer,et al.  Correlation between the Extinction Spectrum of a Single Metal Nanoparticle and Its Electron Microscopy Image , 2008 .

[24]  Paul Mulvaney,et al.  Electric‐Field‐Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions , 2004 .

[25]  Hristina Petrova,et al.  Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. , 2006, Physical chemistry chemical physics : PCCP.

[26]  M. Pileni,et al.  Optical properties of gold nanorods: DDA simulations supported by experiments. , 2005, The journal of physical chemistry. B.

[27]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[28]  O. Muskens,et al.  Single metal nanoparticle absorption spectroscopy and optical characterization , 2006 .

[29]  Younan Xia,et al.  Correlated Rayleigh Scattering Spectroscopy and Scanning Electron Microscopy Studies of Au-Ag Bimetallic Nanoboxes and Nanocages. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[30]  Natalia Del Fatti,et al.  Femtosecond response of a single metal nanoparticle. , 2006, Nano letters.

[31]  C. Sönnichsen,et al.  Microfluidic continuous flow synthesis of rod-shaped gold and silver nanocrystals. , 2006, Physical Chemistry, Chemical Physics - PCCP.

[32]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[33]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[34]  M. Pileni,et al.  Collections of copper nanocrystals characterized by different sizes and shapes: Optical response of these nanoobjects , 2004 .